Brasher Maizy S, Fisher Matthew J, Wild Carolina Sanchez, Shortt Jonathan A, Miller Krista, Johnson Randi K, Rafaels Nicholas M, Kudron Elizabeth L, Brooks Ian M, Crooks Kristy R, Oser Sean M, Oser Tamara K, Cole Joanne B, Wiley Laura K, Raghavan Sridharan, Rasouli Neda, Lin Meng, Gignoux Christopher R
Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.
Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.
medRxiv. 2025 Jul 17:2025.07.15.25331523. doi: 10.1101/2025.07.15.25331523.
Type 1 diabetes polygenic risk scores (PRS) offer a promising tool for identifying diabetes subtypes in adults with new-onset disease. We aimed to develop a pipeline for the clinical translation of type 1 diabetes PRS to support clinical decision-making within a large health system and to provide publicly available code for applying these methods to future PRS models.
We adapted two established type 1 diabetes PRS models: a 67-SNP (GRS2) and a 7-SNP (AA7) score for a clinical genotyping platform and applied them to 73,346 participants in the biobank at the Colorado Center for Personalized Medicine (CCPM). We evaluated the scores' performance differentiating between type 1 and type 2 diabetes in adults using a clinician-curated diabetes phenotyping algorithm and examined associations with diabetes-related clinical data extracted from patients' health records. The impact of technical genotyping missingness on score accuracy and ancestry calibration were assessed independently.
Both scores effectively distinguished type 1 from type 2 diabetes across genetically defined ancestry groups (all AUC > 0.80) and demonstrated consistent performance in the UK Biobank (all AUC > 0.75). Individuals in the top quintile of each PRS were enriched for diabetic ketoacidosis (DKA) cases, accounting for nearly half of all DKA cases in the cohort. Additionally, the top quintile showed nearly threefold increased odds of GAD autoantibody positivity (OR = 2.94 [95% CI 2.08-4.17]).
Our evaluations demonstrated the potential utility of PRS for diabetes subtyping in a clinical setting. We present a framework of critical steps toward a standardized system for future translation of diabetes PRS to equitable clinical use, along with software to make it possible for others.
1型糖尿病多基因风险评分(PRS)为识别新发疾病成人中的糖尿病亚型提供了一个有前景的工具。我们旨在开发一个将1型糖尿病PRS临床转化的流程,以支持大型医疗系统中的临床决策,并提供公开可用的代码,以便将这些方法应用于未来的PRS模型。
我们将两个已建立的1型糖尿病PRS模型(一个67个单核苷酸多态性的模型(GRS2)和一个7个单核苷酸多态性的模型(AA7)评分)适配到一个临床基因分型平台,并将其应用于科罗拉多个性化医学中心(CCPM)生物样本库中的73346名参与者。我们使用临床医生整理的糖尿病表型分析算法评估了这些评分在区分成人1型和2型糖尿病方面的性能,并检查了与从患者健康记录中提取的糖尿病相关临床数据的关联。独立评估了技术基因分型缺失对评分准确性和血统校准的影响。
两个评分在不同遗传定义的血统组中都有效地将1型糖尿病与2型糖尿病区分开来(所有曲线下面积(AUC)>0.80),并且在英国生物样本库中表现一致(所有AUC>0.75)。每个PRS最高五分位数中的个体糖尿病酮症酸中毒(DKA)病例富集度高,占队列中所有DKA病例的近一半。此外,最高五分位数显示谷氨酸脱羧酶自身抗体阳性的几率增加了近三倍(比值比(OR)=2.94[95%置信区间(CI)2.08-4.17])。
我们的评估证明了PRS在临床环境中用于糖尿病亚型分型的潜在效用。我们提出了一个迈向标准化系统的关键步骤框架,以便未来将糖尿病PRS公平地转化为临床应用,并提供了使其他人也能做到这一点的软件。