通过可解释的深度学习实现高效准确的非侵入性肿瘤监测与诊断。
Efficient and accurate non-invasive tumor monitoring and diagnosis by interpretable deep learning.
作者信息
Yang Youpeng, Liu Jiaying, He Yutong, Yang Yingjie, Jiang Tao, Tang Jia, Li Xin
机构信息
School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China.
出版信息
iScience. 2025 Jul 18;28(8):113158. doi: 10.1016/j.isci.2025.113158. eCollection 2025 Aug 15.
Detecting tumor-specific DNA methylation in circulating tumor DNA (ctDNA) offers a non-invasive method for tumor detection. The primary challenge lies in identifying the extremely low abundance of ctDNA in cell-free blood plasma (cfDNA). In this study, we present Oncoder, an interpretable deep learning-based tool for economical and accurate non-invasive tumor monitoring and diagnosis. Unlike other methods, Oncoder learns scientifically sound reference methylation atlases from patient blood to provide additional diagnostic insights, fostering trust among clinicians and patients, and continuously improves its accuracy through iterative learning. In simulations, Oncoder reduced prediction errors of tumor signals in blood by at least 30% compared to existing methods and showed the highest prediction correlation, indicating more accurate tumor progression monitoring. We also evaluated Oncoder's performance in various real-world applications. Oncoder sensitively detected changes in ctDNA levels during tumor development and treatment and exhibited superior diagnostic potential even in the earliest stages of cancer.
检测循环肿瘤DNA(ctDNA)中的肿瘤特异性DNA甲基化为肿瘤检测提供了一种非侵入性方法。主要挑战在于识别无细胞血浆(cfDNA)中极低丰度的ctDNA。在本研究中,我们提出了Oncoder,这是一种基于深度学习的可解释工具,用于经济、准确的非侵入性肿瘤监测和诊断。与其他方法不同,Oncoder从患者血液中学习科学合理的参考甲基化图谱,以提供额外的诊断见解,增强临床医生和患者之间的信任,并通过迭代学习不断提高其准确性。在模拟中,与现有方法相比,Oncoder将血液中肿瘤信号的预测误差降低了至少30%,并显示出最高的预测相关性,表明肿瘤进展监测更准确。我们还评估了Oncoder在各种实际应用中的性能。Oncoder灵敏地检测到肿瘤发生和治疗过程中ctDNA水平的变化,甚至在癌症的最早阶段也表现出卓越的诊断潜力。