Ren JiaLi, Zhang Ting, Li Jing
J Opt Soc Am A Opt Image Sci Vis. 2025 Apr 1;42(4):529-541. doi: 10.1364/JOSAA.547470.
A dual-functional switchable terahertz metamaterial (THz MM) device with broadband absorption and polarization conversion capabilities is proposed, leveraging the insulator-to-metal phase transition of vanadium dioxide (). In its metallic state, the device functions as an absorber, achieving a bandwidth of 3.93 THz within the frequency range of 2.53-6.46 THz and maintaining an absorption rate of ≥90. In its insulating state, the device operates as a polarization converter, providing two conversion modes: linear-to-cross-polarization (LTX) over the range of 1.17-3.63 THz, and linear-to-circular polarization (LTC) within the ranges of 1.04-1.14 THz and 3.71-3.87 THz. This study presents a significant advancement over conventional THz devices by overcoming the limitations of single-functionality through innovative design strategies and offering what we believe is a novel approach to multifunctional integration. Leveraging the switchable properties of , the device achieves outstanding performance in both broadband absorption and polarization conversion. Furthermore, deep neural networks (DNNs) significantly reduce the computational time required by traditional optimization methods by efficiently navigating multi-dimensional parameter spaces. DNNs can also capture complex nonlinear relationships between parameters that are often difficult to model with conventional techniques. This highlights the potential of artificial intelligence in the design of functional materials. With these capabilities, the device shows promising applications in fields such as THz stealth technology, energy harvesting, THz communication, polarization imaging, and optical information processing.
提出了一种具有宽带吸收和偏振转换功能的双功能可切换太赫兹超材料(THz MM)器件,利用了二氧化钒()的绝缘体-金属相变。在其金属态下,该器件用作吸收器,在2.53-6.46太赫兹的频率范围内实现了3.93太赫兹的带宽,并保持≥90%的吸收率。在其绝缘态下,该器件用作偏振转换器,提供两种转换模式:在1.17-3.63太赫兹范围内的线偏振到交叉偏振(LTX),以及在1.04-1.14太赫兹和3.71-3.87太赫兹范围内的线偏振到圆偏振(LTC)。本研究通过创新设计策略克服了单功能的局限性,为多功能集成提供了一种我们认为新颖的方法,相对于传统太赫兹器件有了显著进步。利用的可切换特性,该器件在宽带吸收和偏振转换方面均实现了出色性能。此外,深度神经网络(DNN)通过有效导航多维参数空间,显著减少了传统优化方法所需的计算时间。DNN还可以捕捉参数之间复杂的非线性关系,而这些关系通常难以用传统技术建模。这突出了人工智能在功能材料设计中的潜力。凭借这些能力,该器件在太赫兹隐身技术、能量收集、太赫兹通信、偏振成像和光学信息处理等领域显示出有前景的应用。