Fu Lei, Hu Yuqing, Tang Ning, Duan Junxi, Jia Xionghui, Yang Huaiyuan, Li Zhuoxian, Han Xiangyan, Li Guoping, Lu Jianming, Dai Lun, Ge Weikun, Yao Yugui, Shen Bo
Peking University, State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Beijing, 100871, China.
Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing, 100081, China.
Phys Rev Lett. 2025 Jul 25;135(4):046903. doi: 10.1103/rt4w-v9r8.
Atomically thin hexagonal boron nitride (h-BN), especially monolayer, has emerged as a pivotal quantum material due to its intriguing optical and light-matter-interaction properties. Nevertheless, fundamental ambiguities persist regarding its intrinsic band structure and deep-UV optical responses. Here, a multispectroscopic approach-combining near-resonance deep-UV photoluminescence, Raman spectroscopy, and reflectance contrast measurements-is employed to systematically resolve the layer-dependent optoelectronic evolution of h-BN. It is revealed that the absence of band-edge luminescence in 1-3 layers h-BN is indicative of their indirect band gap nature, thereby rectifying longstanding misinterpretations of monolayer BN as a direct band gap semiconductor. Strikingly, band-edge luminescence signals and indirect band gap absorption start to appear in 4-layer, and the luminescence intensity increases with the number of layers, suggesting that interlayer interactions and periodicity along the z axis enhance phonon-assisted indirect band gap transition, even in the 4-layer case, and furthermore indicating the formation process of flat bands at K/M valleys as the periodicity along z direction increases. Moreover, the prominent resonance Raman signals in atomically thin h-BN reveals exceptionally strong electron-phonon coupling, a critical parameter for quantum optoelectronic applications. Our findings provide definitive experimental benchmarks for the long-debated monolayer BN's band structure.
原子级薄的六方氮化硼(h-BN),尤其是单层h-BN,因其引人入胜的光学和光与物质相互作用特性而成为一种关键的量子材料。然而,关于其本征能带结构和深紫外光学响应仍存在基本的模糊性。在此,采用一种多光谱方法——结合近共振深紫外光致发光、拉曼光谱和反射率对比测量——来系统地解析h-BN的层依赖光电演化。结果表明,1 - 3层h-BN中不存在带边发光表明其具有间接带隙性质,从而纠正了长期以来将单层BN误解为直接带隙半导体的观点。引人注目的是,带边发光信号和间接带隙吸收在4层时开始出现,并且发光强度随层数增加,这表明即使在4层的情况下,层间相互作用和沿z轴的周期性增强了声子辅助的间接带隙跃迁,进而表明随着沿z方向周期性的增加,K/M谷处平带的形成过程。此外,原子级薄的h-BN中突出的共振拉曼信号揭示了异常强的电子 - 声子耦合,这是量子光电子应用的一个关键参数。我们的发现为长期争论的单层BN的能带结构提供了明确的实验基准。