Suppr超能文献

使用深度学习方法对慢性肝病中肝脏血管与体积比进行MRI衍生量化

MRI-derived quantification of hepatic vessel-to-volume ratios in chronic liver disease using a deep learning approach.

作者信息

Herold Alexander, Sobotka Daniel, Beer Lucian, Bastati Nina, Poetter-Lang Sarah, Weber Michael, Reiberger Thomas, Mandorfer Mattias, Semmler Georg, Simbrunner Benedikt, Wichtmann Barbara D, Ba-Ssalamah Sami A, Trauner Michael, Ba-Ssalamah Ahmed, Langs Georg

机构信息

Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.

Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.

出版信息

Eur Radiol Exp. 2025 Aug 12;9(1):75. doi: 10.1186/s41747-025-00612-y.

Abstract

BACKGROUND

We aimed to quantify hepatic vessel volumes across chronic liver disease stages and healthy controls using deep learning-based magnetic resonance imaging (MRI) analysis, and assess correlations with biomarkers for liver (dys)function and fibrosis/portal hypertension.

METHODS

We assessed retrospectively healthy controls, non-advanced and advanced chronic liver disease (ACLD) patients using a 3D U-Net model for hepatic vessel segmentation on portal venous phase gadoxetic acid-enhanced 3-T MRI. Total (TVVR), hepatic (HVVR), and intrahepatic portal vein-to-volume ratios (PVVR) were compared between groups and correlated with: albumin-bilirubin (ALBI) and "model for end-stage liver disease-sodium" (MELD-Na) score) and fibrosis/portal hypertension (Fibrosis-4 (FIB-4) Score, liver stiffness measurement (LSM), hepatic venous pressure gradient (HVPG), platelet count (PLT), and spleen volume.

RESULTS

We included 197 subjects, aged 54.9 ± 13.8 years (mean ± standard deviation), 111 males (56.3%): 35 healthy controls, 44 non-ACLD, and 118 ACLD patients. TVVR and HVVR were highest in controls (3.9; 2.1), intermediate in non-ACLD (2.8; 1.7), and lowest in ACLD patients (2.3; 1.0) (p ≤ 0.001). PVVR was reduced in both non-ACLD and ACLD patients (both 1.2) compared to controls (1.7) (p ≤ 0.001), but showed no difference between CLD groups (p = 0.999). HVVR significantly correlated indirectly with FIB-4, ALBI, MELD-Na, LSM, and spleen volume (ρ ranging from -0.27 to -0.40), and directly with PLT (ρ = 0.36). TVVR and PVVR showed similar but weaker correlations.

CONCLUSION

Deep learning-based hepatic vessel volumetry demonstrated differences between healthy liver and chronic liver disease stages and shows correlations with established markers of disease severity.

RELEVANCE STATEMENT

Hepatic vessel volumetry demonstrates differences between healthy liver and chronic liver disease stages, potentially serving as a non-invasive imaging biomarker.

KEY POINTS

Deep learning-based vessel analysis can provide automated quantification of hepatic vascular changes across healthy liver and chronic liver disease stages. Automated quantification of hepatic vasculature shows significantly reduced hepatic vascular volume in advanced chronic liver disease compared to non-advanced disease and healthy liver. Decreased hepatic vascular volume, particularly in the hepatic venous system, correlates with markers of liver dysfunction, fibrosis, and portal hypertension.

摘要

背景

我们旨在使用基于深度学习的磁共振成像(MRI)分析来量化慢性肝病各阶段及健康对照者的肝血管容积,并评估其与肝脏(功能)障碍和纤维化/门静脉高压生物标志物之间的相关性。

方法

我们回顾性评估了健康对照者、非晚期和晚期慢性肝病(ACLD)患者,使用三维U-Net模型在门静脉期钆塞酸二钠增强的3-T MRI上对肝血管进行分割。比较了各组之间的总血管容积比(TVVR)、肝血管容积比(HVVR)和肝内门静脉与容积比(PVVR),并将其与以下指标相关联:白蛋白-胆红素(ALBI)和“终末期肝病-钠模型”(MELD-Na)评分,以及纤维化/门静脉高压(Fibrosis-4(FIB-4)评分、肝脏硬度测量(LSM)、肝静脉压力梯度(HVPG)、血小板计数(PLT)和脾脏容积。

结果

我们纳入了197名受试者,年龄为54.9±13.8岁(平均值±标准差),男性111名(56.3%):35名健康对照者、44名非ACLD患者和118名ACLD患者。TVVR和HVVR在对照组中最高(分别为3.9;2.1),在非ACLD患者中居中(分别为2.8;1.7),在ACLD患者中最低(分别为2.3;1.0)(p≤0.001)。与对照组(1.7)相比,非ACLD和ACLD患者的PVVR均降低(均为1.2)(p≤0.001),但在慢性肝病组之间无差异(p=0.999)。HVVR与FIB-4、ALBI、MELD-Na、LSM和脾脏容积呈显著间接相关(ρ范围为-0.27至-0.40),与PLT呈直接相关(ρ=0.36)。TVVR和PVVR显示出相似但较弱的相关性。

结论

基于深度学习的肝血管容积测定显示了健康肝脏与慢性肝病各阶段之间的差异,并与已确立的疾病严重程度标志物相关。

相关性声明

肝血管容积测定显示了健康肝脏与慢性肝病各阶段之间的差异,有可能作为一种非侵入性成像生物标志物。

关键点

基于深度学习的血管分析可对健康肝脏和慢性肝病各阶段的肝血管变化进行自动量化。与非晚期疾病和健康肝脏相比,晚期慢性肝病中肝血管系统的自动量化显示肝血管容积显著减少。肝血管容积减少,尤其是肝静脉系统,与肝功能障碍、纤维化和门静脉高压的标志物相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b353/12343422/88f8ed8dbf07/41747_2025_612_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验