Duari Subhadeep, Gautam Vishakha, Ahuja Gaurav
Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India.
Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Infosys Centre for AI, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India.
STAR Protoc. 2025 Aug 11;6(3):104023. doi: 10.1016/j.xpro.2025.104023.
Here, we present a protocol for predicting cellular age via computer vision analysis of cellular morphology and aging-related bioactivities from phase contrast microscopy images. We describe the steps for cultivating yeast cells, performing phase contrast microscopy of drug-treated yeast cells, and inducing senescence in human dermal fibroblasts. We detail the process of using the scCamAge Docker container, running the scCamAge model, applying the yeast-trained model to senescent human fibroblasts, and performing transfer learning to adapt scCamAge using human fibroblast data. For complete details on the use and execution of this protocol, please refer to Gautam et al..
在此,我们展示了一种通过对相差显微镜图像中的细胞形态和衰老相关生物活性进行计算机视觉分析来预测细胞年龄的方案。我们描述了培养酵母细胞、对药物处理的酵母细胞进行相差显微镜观察以及诱导人皮肤成纤维细胞衰老的步骤。我们详细介绍了使用scCamAge Docker容器、运行scCamAge模型、将酵母训练模型应用于衰老的人成纤维细胞以及使用人成纤维细胞数据进行迁移学习以适配scCamAge的过程。有关此方案的使用和执行的完整详细信息,请参考高塔姆等人的研究。