Görög Péter, Novák Tibor, Polgár Tamás F, Bíró Péter, Gutheil Adél, Kozma Csaba, Gajdos Tamás, Tóth Krisztina, Tóth Alexandra, Erdélyi Miklós, Mihály József, Szikora Szilárd
HUN-REN Biological Research Centre, Szeged, Hungary.
Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary.
Open Biol. 2025 Aug;15(8):250182. doi: 10.1098/rsob.250182. Epub 2025 Aug 13.
The indirect flight muscle is a widely used model for studying sarcomere structure and muscle development due to its extremely regular architecture. Nevertheless, precise measurement of the basic sarcomeric parameters remains a challenge even in this greatly ordered tissue. In this study, we identified several factors affecting measurement reliability and developed a software tool for precise, high-throughput measurement of sarcomere length and myofibril width. The accuracy of this new tool was validated against simulated images and blinded manual measurements. To extend the scope of this morphometric analysis to the sub-sarcomeric scale, we used electron and super-resolution microscopy to quantify myofilament number and filament length during myofibrillogenesis. Our findings revealed the dynamics of thin and thick filament elongation, as well as the addition of myofilaments at the sarcomere periphery during myofibrillogenesis. We precisely measured the dimensions of the Z-disc, I-band and H-zone during development, enabling us to construct refined models of sarcomere growth at the level of individual myofilaments, providing a spatial framework for interpreting nanoscopic localization data. These models deepen our understanding of sarcomere growth and lay the groundwork for future studies on the molecular mechanisms driving myofilament elongation and assembly.
间接飞行肌因其极其规则的结构,是研究肌节结构和肌肉发育的广泛使用的模型。然而,即使在这种高度有序的组织中,精确测量基本的肌节参数仍然是一项挑战。在本研究中,我们确定了几个影响测量可靠性的因素,并开发了一种软件工具,用于精确、高通量地测量肌节长度和肌原纤维宽度。该新工具的准确性通过模拟图像和盲法人工测量进行了验证。为了将这种形态计量分析的范围扩展到肌节亚尺度,我们使用电子显微镜和超分辨率显微镜来量化肌原纤维形成过程中的肌丝数量和丝长度。我们的研究结果揭示了细肌丝和粗肌丝伸长的动态过程,以及肌原纤维形成过程中肌节周边肌丝的添加。我们精确测量了发育过程中Z盘、I带和H区的尺寸,使我们能够构建单个肌丝水平上肌节生长的精细模型,为解释纳米级定位数据提供了一个空间框架。这些模型加深了我们对肌节生长的理解,并为未来关于驱动肌丝伸长和组装的分子机制的研究奠定了基础。