Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany.
School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America.
PLoS Biol. 2024 Apr 29;22(4):e3002575. doi: 10.1371/journal.pbio.3002575. eCollection 2024 Apr.
Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.
肌肉在基因表达和选择性剪接方面经历发育转变,这对于精细调节肌节结构和收缩性是必要的。CUG-BP 和 ETR-3 样(CELF)家族 RNA 结合蛋白是肌发生过程中 RNA 处理的重要调节剂,在肌强直性营养不良 1 型(DM1)等疾病中失调。在这里,我们报告了 Bruno 1(Bru1,Arrest)在果蝇中的早期肌肉发生中的保守功能,它是 CELF1/2 家族的同源物。飞行肌肉中 Bru1 的缺失导致肌动蛋白细胞骨架的紊乱,导致肌纤维异常致密和前肌原纤维形成缺陷。时间限制的挽救和 RNAi 敲低表明,早期细胞骨架缺陷干扰了随后肌节生长和成熟的步骤。早期缺陷与后期 bru1 调节肌纤维成熟过程中肌节组装动力学的要求不同。我们确定了在发育后期,肌节长度和宽度的生长不平衡是驱动异常径向生长、肌原纤维融合以及 bru1 突变肌肉中空肌原纤维形成的机制。从分子上讲,我们在飞行肌发育中鉴定了一个从未成熟到成熟肌节基因亚型表达的全基因组转变,而这在 bru1 突变体中被阻断。我们进一步证明,时间限制的 Bru1 挽救可以部分缓解晚期蛹和成虫阶段的过度收缩,但不能恢复肌纤维功能或纠正结构缺陷。我们的结果揭示了 CELF 功能在调节肌肉发育中细胞骨架动力学的保守性质,并表明由于 CELF 蛋白的异常表达导致的 RNA 处理缺陷会导致广泛的结构缺陷和受影响肌肉的进行性功能障碍,而晚期基因替换无法挽救。