Hong Rim Kyung, Kim Moonsu, Hong Eun Hee, Kang Min Ho, Shin Yong Un, Park Hwan-Cheol, Hwang Sunjin
Department of Ophthalmology, Hanyang University Guri Hospital, Guri City, South Korea.
Department of Ophthalmology, Hanyang University Guri Hospital, Guri City, South Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, South Korea.
Can J Ophthalmol. 2025 Aug 9. doi: 10.1016/j.jcjo.2025.07.008.
To evaluate the repeatability and reproducibility of the Dr.Noon CVD, an artificial intelligence software as a medical device that assesses cardiovascular risk from retinal photographs by providing risk scores and classifying patients into three categories: category 0 (low risk), category 1 (intermediate risk), and category 2 (high risk).
In this prospective, single-center study, participants underwent nonmydriatic fundus photography. For repeatability assessment, one examiner captured 3 consecutive images per eye. For reproducibility, a second examiner independently acquired 1 image per eye. Intraclass correlation coefficients (ICCs), within-subject standard deviations, and coefficients of variation were calculated. Differences by risk category and lens status were assessed using ANOVA and independent t tests.
Overall, Dr.Noon CVD demonstrated excellent reliability, with a repeatability ICC of 0.997 (95% confidence interval [CI]: 0.996-0.998) and a reproducibility ICC of 0.999 (95% CI: 0.998-0.999). When analyzed by risk categories, repeatability, and reproducibility ICCs were 0.985 (95% CI: 0.974-0.997) and 0.995 (95% CI: 0.990-0.997) for category 0, 0.960 (95% CI: 0.918-0.983) and 0.969 (95% CI: 0.921-0.988) for category 1, and 0.965 (95% CI: 0.943-0.980) and 0.984 (95% CI: 0.971-0.992) for category 2. In terms of lens status, phakic eyes showed repeatability and reproducibility ICCs of 0.998 (95% CI: 0.996-0.998) and 0.999 (95% CI: 0.998-0.999), respectively, while pseudophakic eyes showed slightly lower but still excellent values of 0.989 (95% CI: 0.980-0.995) and 0.994 (95% CI: 0.988-0.997).
Dr.Noon CVD demonstrated high precision with excellent repeatability and reproducibility across all risk levels and lens statuses, supporting its reliability for cardiovascular risk screening using retinal images.
评估Dr.Noon CVD这一人工智能软件作为医疗设备的重复性和再现性。该软件通过提供风险评分并将患者分为三类:0类(低风险)、1类(中度风险)和2类(高风险),从视网膜照片评估心血管风险。
在这项前瞻性单中心研究中,参与者接受了免散瞳眼底摄影。对于重复性评估,一名检查者每只眼睛连续拍摄3张图像。对于再现性评估,第二名检查者每只眼睛独立获取1张图像。计算组内相关系数(ICC)、受试者内标准差和变异系数。使用方差分析和独立t检验评估不同风险类别和晶状体状态的差异。
总体而言,Dr.Noon CVD显示出出色的可靠性,重复性ICC为0.997(95%置信区间[CI]:0.996 - 0.998),再现性ICC为0.999(95%CI:0.998 - 0.999)。按风险类别分析时,0类的重复性和再现性ICC分别为0.985(95%CI:0.974 - 0.997)和0.995(95%CI:0.990 - 0.997),1类为0.960(95%CI:0.918 - 0.983)和0.969(95%CI:0.921 - 0.988),2类为0.965(95%CI:0.943 - 0.980)和0.984(95%CI:0.971 - 0.992)。就晶状体状态而言,有晶状体眼的重复性和再现性ICC分别为0.998(95%CI:0.996 - 0.998)和0.999(95%CI:0.998 - 0.999),而人工晶状体眼的ICC值略低但仍很出色,分别为0.989(95%CI:0.980 - 0.995)和0.994(95%CI:0.988 - 0.997)。
Dr.Noon CVD在所有风险水平和晶状体状态下均显示出高精度,具有出色的重复性和再现性,支持其使用视网膜图像进行心血管风险筛查的可靠性。