Suppr超能文献

基于MnO电极的柔性铁离子混合电容器。

Flexible Iron-Ion Hybrid Capacitor Based on a MnO Electrode.

作者信息

Zhang Ke, Bai Yafeng, Wang Liying, Zhang Shuli, You Zhuo, Yang Xijia, Lü Wei

机构信息

Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science & College of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, P. R. China.

Changchun FAWAY Automobile Components Co., Ltd., Changchun 130012, P. R. China.

出版信息

Langmuir. 2025 Aug 26;41(33):22011-22019. doi: 10.1021/acs.langmuir.5c01812. Epub 2025 Aug 12.

Abstract

Aqueous Fe-ion hybrid capacitors, with high safety, low cost, and environmental friendliness, have attracted considerable attention as an emerging energy storage device. However, Fe-ion-based energy storage systems still face challenges, such as narrow voltage windows, limited energy density, and harsh fabrication conditions. To address these issues, this work fabricates an aqueous Fe-ion hybrid capacitor using low-cost activated carbon as the anode, manganese dioxide (MnO) as the cathode, with an FeSO + NHCl aqueous electrolyte, successfully expanding the voltage window to 0-1.2 V. The atomic molecular dynamics simulations confirm the potential of MnO as a cathode material, and the spiny nanostructured MnO shows a large specific surface area and a stable tunnel structure, which facilitates the intercalation/deintercalation of Fe ions. Consequently, the assembled device achieved a specific capacitance of 835 mF cm at 1 mA cm and a surface energy density of 167 μWh cm with a capacitance retention of 97.2% after 3000 cycles. Furthermore, to meet wearable electronics requirements, a flexible device was assembled by integrating a carboxymethyl cellulose-poly(vinyl alcohol) hydrogel soft-packaging material. The results show that the flexible device exhibits excellent bending resistance. The further assembled flexible Fe-ion supercapacitors demonstrate a high energy storage potential. Under a current density test of 1 mA cm, the calculated specific capacitance is 682.4 mF cm, and the areal energy density is 136.48 μWh cm. The further assembled flexible Fe-ion supercapacitors demonstrate high energy storage potential. Under a current density test of 1 mA cm, the calculated specific capacitance is 682.4 mF cm, and the areal energy density is 136.48 μWh cm. Similarly, in the cycling performance test, the device retains 92.6% of its capacity after 3000 cycles. This study provides technical references for the development and practical application of flexible Fe-ion-based energy storage devices.

摘要

水系铁离子混合电容器具有高安全性、低成本和环境友好性,作为一种新兴的储能装置受到了广泛关注。然而,基于铁离子的储能系统仍然面临挑战,如电压窗口窄、能量密度有限和苛刻的制备条件。为了解决这些问题,本工作采用低成本的活性炭作为阳极、二氧化锰(MnO)作为阴极,并以FeSO₄+NH₄Cl水系电解质制备了一种水系铁离子混合电容器,成功地将电压窗口扩展到0-1.2V。原子分子动力学模拟证实了MnO作为阴极材料的潜力,而多刺纳米结构的MnO具有大的比表面积和稳定的隧道结构,有利于铁离子的嵌入/脱嵌。因此,组装后的器件在1mA/cm²时实现了835mF/cm²的比电容和167μWh/cm²的面积能量密度,在3000次循环后电容保持率为97.2%。此外,为了满足可穿戴电子产品的要求,通过集成羧甲基纤维素-聚乙烯醇水凝胶软包装材料组装了一种柔性器件。结果表明,该柔性器件具有优异的抗弯曲性能。进一步组装的柔性铁离子超级电容器展现出高储能潜力。在1mA/cm²的电流密度测试下,计算得到的比电容为682.4mF/cm²,面积能量密度为136.48μWh/cm²。进一步组装的柔性铁离子超级电容器展现出高储能潜力。在1mA/cm²的电流密度测试下,计算得到的比电容为682.4mF/cm²,面积能量密度为136.48μWh/cm²。同样,在循环性能测试中,该器件在3000次循环后保留了92.6%的容量。本研究为柔性铁离子基储能器件的开发和实际应用提供了技术参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验