Zhou Dongli, Hao Qian, Shi Weixian, Chen Jintian, Wang Zhaoyan, Du Jiaxin, Lu Qiong, Teng Chunlin
Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China.
Langmuir. 2025 Sep 2;41(34):22991-23002. doi: 10.1021/acs.langmuir.5c02622. Epub 2025 Aug 20.
Aqueous rechargeable Ni-Fe batteries exhibit considerable potential for use in large-scale energy storage systems due to their stable operating voltage, inherent safety, low cost, and high power density. Herein, a core-shell composite was designed for anode applications in which the FeCO@FeCO polyhedron and the polythiophene (PTh) layer serve as the core and shell, respectively. Owing to its core-shell structure, multicomponent synergistic effect, rough surface morphology, and enhanced electrical conductivity, the as-fabricated binder-free FeCO@FeCO-PTh electrode delivers excellent electrochemical performance, including high specific capacities (10.8 mAh cm and 490 mAh g at 5 mA cm), good rate capability (1.76 mAh cm at 100 mA cm), and stabilized cycling performance (95.5% capacity retention after 2500 cycles). These metrics surpass those of the uncoated FeCO@FeCO electrode as well as the individual FeCO (3.11 mAh cm), FeCO (1.54 mAh cm), and PTh (0.8 mAh cm) electrodes. Notably, the simultaneous achievement of high areal and gravimetric specific capacities in Fe-based electrodes is scarce, further highlighting the value of our FeCO@FeCO-PTh electrode. Moreover, when assembled into a Ni-Fe battery with the optimal FeCO@FeCO-PTh electrode, the NiCO//FeCO@FeCO-PTh device achieves an energy density of 3.53 mWh cm (421 Wh kg) at a power density of 2 mW cm (238.2 W kg), surpassing most previously reported aqueous energy storage devices. This work provides a feasible approach for designing advanced iron-based electrodes and paving the way for the practical application of Ni-Fe battery systems and other iron-based energy storage devices.
水系可充电镍铁电池因其稳定的工作电压、固有安全性、低成本和高功率密度,在大规模储能系统中具有巨大的应用潜力。在此,设计了一种核壳复合材料用于阳极,其中FeCO@FeCO多面体和聚噻吩(PTh)层分别作为核和壳。由于其核壳结构、多组分协同效应、粗糙的表面形貌和增强的导电性,所制备的无粘结剂FeCO@FeCO-PTh电极具有优异的电化学性能,包括高比容量(5 mA cm时为10.8 mAh cm和490 mAh g)、良好的倍率性能(100 mA cm时为1.76 mAh cm)和稳定的循环性能(2500次循环后容量保持率为95.5%)。这些指标超过了未涂层的FeCO@FeCO电极以及单独的FeCO(3.11 mAh cm)、FeCO(1.54 mAh cm)和PTh(0.8 mAh cm)电极。值得注意的是,在铁基电极中同时实现高面积比容量和高重量比容量的情况很少见,这进一步凸显了我们的FeCO@FeCO-PTh电极的价值。此外,当与最佳的FeCO@FeCO-PTh电极组装成镍铁电池时,NiCO//FeCO@FeCO-PTh器件在2 mW cm(238.2 W kg)的功率密度下实现了3.53 mWh cm(421 Wh kg)的能量密度,超过了大多数先前报道的水系储能器件。这项工作为设计先进的铁基电极提供了一种可行的方法,并为镍铁电池系统和其他铁基储能器件的实际应用铺平了道路。