Stehouwer Lucas E A, Losert Merrit P, Rigot Maia, Degli Esposti Davide, Martí-Sánchez Sara, Rimbach-Russ Maximillian, Arbiol Jordi, Friesen Mark, Scappucci Giordano
QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
Nano Lett. 2025 Aug 27;25(34):12892-12898. doi: 10.1021/acs.nanolett.5c02848. Epub 2025 Aug 12.
Electron-spin qubits in Si/SiGe quantum wells are limited by the small and variable energy separation of the conduction-band valleys. While sharp quantum-well interfaces are pursued to increase the valley-splitting energy deterministically, here we explore an alternative approach to enhancing the valley splitting on average. We grow increasingly thinner quantum wells with broad interfaces to controllably increase the electron wave function overlap with Ge atoms. Quantum Hall measurements of two-dimensional electron gases reveal a linear correlation between valley splitting and disorder-induced single-particle energy-level broadening, driven by increasing alloy scattering at the Si/SiGe interface. We demonstrate enhanced valley splitting while maintaining respectable electron mobility, indicating a low-disorder electrostatic potential environment. Simulations using experimental Ge concentration profiles predict an average valley splitting in quantum dots that matches the enhancement observed in two-dimensional systems. Our results motivate the experimental realization of quantum-dot spin qubits in these heterostructures.
硅/硅锗量子阱中的电子自旋量子比特受限于导带谷的小且可变的能量间距。虽然人们追求尖锐的量子阱界面以确定性地增加谷分裂能量,但在此我们探索一种平均增强谷分裂的替代方法。我们生长具有宽界面的越来越薄的量子阱,以可控地增加电子波函数与锗原子的重叠。二维电子气的量子霍尔测量揭示了谷分裂与无序诱导的单粒子能级展宽之间的线性相关性,这是由硅/硅锗界面处合金散射增加所驱动的。我们展示了增强的谷分裂,同时保持了可观的电子迁移率,表明是一个低无序静电势环境。使用实验锗浓度分布的模拟预测量子点中的平均谷分裂与在二维系统中观察到的增强相匹配。我们的结果推动了在这些异质结构中实验实现量子点自旋量子比特。