Suppr超能文献

耗散囚禁离子中三阶例外点的量子层析成像

Quantum tomography of a third-order exceptional point in a dissipative trapped ion.

作者信息

Chen Y-Y, Li K, Zhang L, Wu Y-K, Ma J-Y, Yang H-X, Zhang C, Qi B-X, Zhou Z-C, Hou P-Y, Xu Y, Duan L-M

机构信息

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, PR China.

RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, Japan.

出版信息

Nat Commun. 2025 Aug 12;16(1):7478. doi: 10.1038/s41467-025-62573-5.

Abstract

Hermiticity in quantum mechanics ensures the reality of energies, while parity-time symmetry offers an alternative route. Interestingly, in a three-level system, parity-time symmetry-breaking can lead to third-order exceptional points with distinctive topological properties. Experimentally implementing this in open quantum systems requires two well-controlled loss channels, resulting in dynamics that challenges a pure non-Hermitian description. Here we address the challenge by employing two approaches to eliminate the effects of quantum jump terms, ensuring pure non-Hermitian dynamics in a dissipative trapped ion. Based on this, we experimentally observe a parity-time symmetry-breaking-induced third-order exceptional point through non-Hermitian absorption spectroscopy. Quantum state tomography further demonstrates the coalescence of three eigenstates into a single eigenstate at the exceptional point. Finally, we identify an intrinsic third-order Liouvillian exceptional point via quench dynamics. Our experiments can be extended to observe other non-Hermitian phenomena involving multiple dissipative levels and potentially find applications in quantum information technology.

摘要

量子力学中的厄密性确保了能量的实值性,而宇称 - 时间对称性提供了另一种途径。有趣的是,在一个三能级系统中,宇称 - 时间对称性破缺会导致具有独特拓扑性质的三阶例外点。在开放量子系统中通过实验实现这一点需要两个精确控制的损耗通道,这会产生一些动力学行为,对纯非厄密描述提出了挑战。在这里,我们通过采用两种方法来消除量子跳跃项的影响,从而应对这一挑战,确保在耗散捕获离子中实现纯非厄密动力学。基于此,我们通过非厄密吸收光谱实验观测到了宇称 - 时间对称性破缺诱导的三阶例外点。量子态层析成像进一步证明了在例外点处三个本征态合并为一个单一本征态。最后,我们通过猝灭动力学确定了一个内在的三阶刘维尔例外点。我们的实验可以扩展到观测涉及多个耗散能级的其他非厄密现象,并有可能在量子信息技术中找到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验