Ouyang Wenlu, Chen Yuchen, Tan Tao, Song Yujing, Dong Tao, Yu Xin, Lee Kyung Eun, Zhou Xinyu, Tetz Zoe, Go Sophia, Zeng Xindi, Shao Liujiazi, Quan Chao, Zhao Ting, Tian Yuzi, Kurabayashi Katsuo, Jin Hua, Ma Jichun, Qin Jingdong, Williams Brandon, Li Qingtian, Zhu Gui-Dong, Alam Hasan B, Stringer Kathleen A, Li Yongqing, Ma Jianjie
Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA.
Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Changsha, China.
Nat Commun. 2025 Aug 12;16(1):7435. doi: 10.1038/s41467-025-62788-6.
Citrullinated histone H3 (CitH3), released from immune cells during early sepsis, drives a vicious cycle of inflammation through excessive NETosis and pyroptosis, causing immune dysfunction and tissue damage. To regulate this process, we develop a humanized CitH3 monoclonal antibody (hCitH3-mAb) with high affinity and specificity to target this process. In murine models, hCitH3-mAb reduces cytokine production, mortality and acute lung injury (ALI) caused by LPS and Pseudomonas aeruginosa while enhancing bacteria phagocytosis in the lungs, spleen, and liver. Using pre-equilibrium digital ELISA (PEdELISA), we identify an optimal therapeutic window for hCitH3-mAb in sepsis-induced ALI. In parallel, we explore the molecular mechanism underlying CitH3-driven inflammation. We find that in macrophages, CitH3 activates Toll-like receptor 2 (TLR2), triggering Ca-dependent PAD2 auto-citrullination and nuclear translocation, amplifying CitH3 production via a harmful feedback loop. The hCitH3-mAb treatment effectively disrupts this cycle and restores macrophage function under septic conditions. Together, these findings highlight both the therapeutic potential of hCitH3-mAb and provide a deep mechanistic insight into the CitH3-PAD2 axis in sepsis, supporting its further development for treating immune-mediated diseases.
在早期脓毒症期间从免疫细胞释放的瓜氨酸化组蛋白H3(CitH3),通过过度的中性粒细胞胞外诱捕和细胞焦亡驱动炎症的恶性循环,导致免疫功能障碍和组织损伤。为了调节这一过程,我们开发了一种具有高亲和力和特异性的人源化CitH3单克隆抗体(hCitH3-mAb)来靶向这一过程。在小鼠模型中,hCitH3-mAb可减少由脂多糖和铜绿假单胞菌引起的细胞因子产生、死亡率和急性肺损伤(ALI),同时增强肺、脾和肝中的细菌吞噬作用。使用预平衡数字酶联免疫吸附测定(PEdELISA),我们确定了hCitH3-mAb在脓毒症诱导的ALI中的最佳治疗窗口。同时,我们探索了CitH3驱动炎症的分子机制。我们发现,在巨噬细胞中,CitH3激活Toll样受体2(TLR2),触发钙依赖性肽瓜氨酸化酶2(PAD2)的自身瓜氨酸化和核转位,通过有害的反馈环放大CitH3的产生。hCitH3-mAb治疗可有效破坏这一循环,并在脓毒症条件下恢复巨噬细胞功能。总之,这些发现突出了hCitH3-mAb的治疗潜力,并为脓毒症中CitH3-PAD2轴提供了深入的机制见解,支持其进一步开发用于治疗免疫介导的疾病。