Yan Yong-Li, Ren Teng, Ding Li, Sun Tiansheng, Huang Shandeng
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
BMC Surg. 2025 Aug 12;25(1):368. doi: 10.1186/s12893-025-03121-2.
A persistent problem with robot-assisted minimally invasive surgery is soft tissue damage caused by the exertion of excessive force due to the surgeon’s lack of direct access to the surgical site. A solution to predict clamp force accurately is needed to enhance surgical safety and efficiency.
The current proposal concerns a deep learning-based solution utilizing a backpropagation neural network (BPNN) optimized by improved sparrow search algorithm (ISSA) to predict clamp force on soft tissue. This method optimizes the BPNN using ISSA and combines dynamic parameters and geometric characteristics, such as contact area of the clamp blade, loading speed, displacement and time, during clamping to predict clamping force on soft tissue. Circular chaotic mapping, golden sine and crisscross strategies were introduced to increase sparrow search algorithm performance, enabling ISSA-optimized BP to achieve substantial improvements in precision and prediction speed for estimating soft tissue clamping force.
The ISSA-BP clamping force prediction model outperforms the BP, ALO-BP, GA-BP, GWO-BP, WOA-BP and SSA-BP models for model evaluation indicators such as RMSE, MSE, MAE, SSE and R². The R² of ISSA-BPNN is 99.24%.
The enhanced ISSA-BPNN model demonstrates superior performance in predicting clamp force on soft tissues during robot-assisted surgeries. The novel method has the potential to increase surgical safety, accuracy and efficiency, representing an advance in the field of surgical robotics.
机器人辅助微创手术中一个长期存在的问题是,由于外科医生无法直接接触手术部位,施加过大的力会导致软组织损伤。需要一种能够准确预测夹钳力的解决方案,以提高手术的安全性和效率。
当前的提议涉及一种基于深度学习的解决方案,该方案利用通过改进麻雀搜索算法(ISSA)优化的反向传播神经网络(BPNN)来预测软组织上的夹钳力。该方法使用ISSA对BPNN进行优化,并结合夹钳过程中的动态参数和几何特征,如夹钳刀片的接触面积、加载速度、位移和时间,来预测软组织上的夹钳力。引入了循环混沌映射、黄金正弦和交叉策略以提高麻雀搜索算法的性能,使ISSA优化的BP在估计软组织夹钳力的精度和预测速度方面有显著提高。
对于RMSE、MSE、MAE、SSE和R²等模型评估指标,ISSA-BP夹钳力预测模型优于BP、ALO-BP、GA-BP、GWO-BP、WOA-BP和SSA-BP模型。ISSA-BPNN的R²为99.24%。
增强后的ISSA-BPNN模型在预测机器人辅助手术中软组织上的夹钳力方面表现出卓越的性能。这种新方法有可能提高手术的安全性、准确性和效率,代表了手术机器人领域的一项进步。