Suppr超能文献

使用网络毒理学和分子对接策略对阿霉素诱导的心肌损伤机制进行系统分析。

Systematic analysis of doxorubicin-induced myocardial injury mechanisms using network toxicology and molecular docking strategy.

作者信息

Jiang Feng, Zheng Zhen, Liu Kaitai

机构信息

Department of Cardiovascular Medicine, The Second Hospital of Yinzhou, Ningbo, Zhejiang Province, China.

Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang Province, China.

出版信息

Medicine (Baltimore). 2025 Aug 8;104(32):e43844. doi: 10.1097/MD.0000000000043844.

Abstract

To systematically investigate the molecular mechanisms of doxorubicin (DOX)-induced myocardial injury through network toxicology, molecular docking, and molecular dynamics simulations, aiming to identify critical molecular targets for reducing DOX's cardiotoxicity. Multiple databases were systematically mined to identify DOX-related targets. A protein-protein interaction network was constructed using STRING database and analyzed via Cytoscape. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using WebGestalt. Molecular docking simulations evaluated binding interactions between DOX and identified hub proteins, followed by 100 ns molecular dynamics simulations to assess complex stability. Results: Network analysis identified 5 critical hub genes (AKT1, TP53, EGFR, HIF1A, and BCL2) among 47 overlapping targets between DOX activity and myocardial injury pathways. Functional enrichment demonstrated significant involvement in cellular responses to oxidative stress, reactive oxygen species (ROS) metabolism, and membrane-associated processes. Molecular docking revealed strong binding interactions with energies from -5.2 to -7.8 kcal/mol. Molecular dynamics simulations confirmed varying complex stability, with EGFR showing superior stability (root mean square deviation [RMSD] = 0.1-0.4 nm), AKT1 and BCL2 displaying moderate fluctuations (~0.6 nm), and HIF1A and TP53 exhibiting greater conformational variability (0.6-0.7 nm). This integrated computational analysis provides insights into DOX-induced myocardial injury mechanisms. The identification of key targets and their differential binding stability with DOX establishes a foundation for developing targeted strategies to minimize cardiotoxicity while preserving therapeutic efficacy.

摘要

通过网络毒理学、分子对接和分子动力学模拟,系统地研究阿霉素(DOX)诱导心肌损伤的分子机制,旨在确定降低DOX心脏毒性的关键分子靶点。系统挖掘多个数据库以识别DOX相关靶点。使用STRING数据库构建蛋白质-蛋白质相互作用网络,并通过Cytoscape进行分析。使用WebGestalt进行基因本体论和京都基因与基因组百科全书(KEGG)通路富集分析。分子对接模拟评估DOX与已识别的枢纽蛋白之间的结合相互作用,随后进行100 ns的分子动力学模拟以评估复合物的稳定性。结果:网络分析在DOX活性与心肌损伤通路之间的47个重叠靶点中确定了5个关键枢纽基因(AKT1、TP53、EGFR、HIF1A和BCL2)。功能富集表明其显著参与细胞对氧化应激的反应、活性氧(ROS)代谢以及膜相关过程。分子对接显示结合能在-5.2至-7.8 kcal/mol之间的强结合相互作用。分子动力学模拟证实了不同的复合物稳定性,EGFR表现出卓越的稳定性(均方根偏差[RMSD]=0.1-0.4nm),AKT1和BCL2表现出中等波动(约0.6nm),而HIF1A和TP53表现出更大的构象变异性(0.6-0.7nm)。这种综合计算分析为DOX诱导的心肌损伤机制提供了见解。关键靶点的识别及其与DOX的不同结合稳定性为制定靶向策略奠定了基础,以在保持治疗效果的同时将心脏毒性降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1744/12338302/28dd4c1111b3/medi-104-e43844-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验