Hassani Gangaraj S Ali, Nguyen Dan T
Opt Express. 2025 Mar 10;33(5):11264-11279. doi: 10.1364/OE.550032.
Quantum gates are crucial for processing quantum information, but implementing them in a photonic platform poses unique challenges due to the peculiar way photons propagate and interfere. Here, we propose quantum photonic gates that utilize continuous time two-dimensional random walking photons. These gates can be implemented using the inverse design method, where photons randomly walk in a two-dimensional silicon host medium embedded with silicon dioxide scatterers. We propose a C-NOT gate as a multiqubit gate and an X-gate as a single qubit gate. In addition, we provide gate fidelity and study the non-trivial spatial correlations of random walking photons by utilizing the quantum correlation function. The results demonstrate high-fidelity probabilistic quantum gates. Further work is required to address error correction. This work advances the practical implementation of photonic elements in linear optics quantum computation schemes.
量子门对于处理量子信息至关重要,但由于光子传播和干涉的特殊方式,在光子平台上实现它们面临着独特的挑战。在这里,我们提出了利用连续时间二维随机游走光子的量子光子门。这些门可以使用逆设计方法来实现,其中光子在嵌入有二氧化硅散射体的二维硅主体介质中随机游走。我们提出将一个受控非门作为多量子比特门,一个X门作为单量子比特门。此外,我们提供了门保真度,并通过利用量子相关函数研究随机游走光子的非平凡空间相关性。结果展示了高保真概率量子门。还需要进一步开展工作来解决纠错问题。这项工作推动了线性光学量子计算方案中光子元件的实际应用。