Suppr超能文献

基于分布反馈表面发射(DFB-SA)激光器芯片和分布反馈激光器(DML)的光子脉冲神经网络用于模式分类。

Photonic spiking neural network based on DML and DFB-SA laser chip for pattern classification.

作者信息

Zeng Xintao, Xiang Shuiying, Han Yanan, Zhang Yahui, Zhang Yuna, Guo Xingxing, Huang Zhiquan, Zou Tao, Shi Yuechun, Hao Yue

出版信息

Opt Express. 2025 Mar 10;33(5):12045-12058. doi: 10.1364/OE.559380.

Abstract

Neuromorphic photonic computing based on spiking dynamics holds significant promise for next-generation AI accelerators, enabling high-speed, low-latency, and low-energy computing. However, the architecture of neuromorphic photonic systems is severely constrained by large-scale discrete devices. In this work, we propose a photonic spiking neural network (PSNN) architecture utilizing a directly modulated laser and a distributed feedback laser with a saturable absorber (DML-DFB-SA). The distributed feedback laser with a saturable absorber (DFB-SA) functions as a photonic spiking neuron, exhibiting nonlinear neuron-like dynamics. Specifically, we replace the conventional optical source and external modulator with a single directly modulated laser (DML), which simultaneously serves as the optical carrier and performs electro-optic conversion. This integration results in enhanced system compactness and reduced power consumption. Experimental results show that the energy efficiency of the DML-DFB-SA system reaches 0.625 pJ/MAC, representing a significant improvement in energy efficiency. Besides, since both DML and DFB-SA laser chips can be fabricated on an Indium Phosphide (InP) substrate, large-scale integration of photonic spiking neural networks (PSNNs) becomes practical. Moreover, the DML-DFB-SA system exhibits consistent robustness against the chirp effect of DML in short-distance transmissions, which makes it a promising candidate for PSNN applications. To validate the DML-DFB-SA's operational principle, we utilize a time-multiplexed spike coding scheme, enabling a single neuron to emulate the functionality of ten neurons. Experimental evaluations demonstrate a recognition accuracy of 94% on the MNIST dataset. The proposed system and approach provide a promising framework for developing low-energy, large-scale integrated PSNN chips.

摘要

基于脉冲动力学的神经形态光子计算对下一代人工智能加速器具有重大前景,可实现高速、低延迟和低能耗计算。然而,神经形态光子系统的架构受到大规模离散器件的严重限制。在这项工作中,我们提出了一种利用直接调制激光器和带有可饱和吸收体的分布反馈激光器(DML-DFB-SA)的光子脉冲神经网络(PSNN)架构。带有可饱和吸收体的分布反馈激光器(DFB-SA)充当光子脉冲神经元,展现出类似非线性神经元的动力学特性。具体而言,我们用单个直接调制激光器(DML)取代传统光源和外部调制器,该激光器同时充当光载波并执行电光转换。这种集成提高了系统紧凑性并降低了功耗。实验结果表明,DML-DFB-SA系统的能量效率达到0.625 pJ/MAC,在能量效率方面有显著提升。此外,由于DML和DFB-SA激光芯片都可以在磷化铟(InP)衬底上制造,光子脉冲神经网络(PSNN)的大规模集成变得切实可行。而且,DML-DFB-SA系统在短距离传输中对DML的啁啾效应表现出一致的鲁棒性,这使其成为PSNN应用的一个有前途的候选方案。为了验证DML-DFB-SA的工作原理,我们采用时分复用脉冲编码方案,使单个神经元能够模拟十个神经元的功能。实验评估表明,在MNIST数据集上的识别准确率为94%。所提出的系统和方法为开发低能耗、大规模集成的PSNN芯片提供了一个有前途的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验