Suppr超能文献

健康科学教育中人工智能生成的多项选择题:利益相关者的观点及实施考量

AI-generated multiple-choice questions in health science education: Stakeholder perspectives and implementation considerations.

作者信息

Reid Matthew, French Michelle, Andreopoulos Stavroula, Wong Christine, Kee Nohjin

机构信息

University of Toronto, School of Continuing Studies, 158 St George St, Toronto, ON M5S 2V8, Canada.

University of Toronto, Department of Physiology, Temerty Faculty of Medicine, Medical Sciences Building 3rd Floor, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.

出版信息

Curr Res Physiol. 2025 Aug 1;8:100160. doi: 10.1016/j.crphys.2025.100160. eCollection 2025.

Abstract

Multiple-choice questions (MCQs) are widely used in health science education because they are an efficient way to evaluate knowledge from simple recall to complex clinical reasoning. The creation of high-quality MCQs, however, can be time-consuming and requires expertise in question composition. Advancements in artificial intelligence (AI), especially large language models (LLMs), offer the potential to allow for the rapid generation of high-quality, consistent, and course-specific MCQs. Here we discuss the potential benefits and drawbacks of the use of this technology in the generation of MCQs, including ensuring the accuracy and fairness of questions, along with technical, ethical, and privacy considerations. We offer practical guiding principles for the implementation of AI-generated MCQs and outline future research areas related to their impact on student learning and educational quality.

摘要

多项选择题(MCQs)在健康科学教育中被广泛使用,因为它们是一种评估知识的有效方式,涵盖从简单回忆到复杂临床推理的各个方面。然而,高质量多项选择题的编写可能耗时且需要问题编写方面的专业知识。人工智能(AI)的进步,尤其是大语言模型(LLMs),为快速生成高质量、一致且针对特定课程的多项选择题提供了可能性。在此,我们讨论在多项选择题生成中使用这项技术的潜在益处和弊端,包括确保问题的准确性和公平性,以及技术、伦理和隐私方面的考量。我们为实施人工智能生成的多项选择题提供实用的指导原则,并概述与其对学生学习和教育质量的影响相关的未来研究领域。

相似文献

9
Artificial Intelligence-Based Large Language Models Can Facilitate Patient Education.基于人工智能的大语言模型可促进患者教育。
J Pediatr Soc North Am. 2025 May 24;12:100196. doi: 10.1016/j.jposna.2025.100196. eCollection 2025 Aug.

本文引用的文献

9
Ethics of large language models in medicine and medical research.医学及医学研究中大型语言模型的伦理问题。
Lancet Digit Health. 2023 Jun;5(6):e333-e335. doi: 10.1016/S2589-7500(23)00083-3. Epub 2023 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验