Deol Kirandeep K, Harris Cynthia A, Tomlinson Sydney J, Doubravsky Cody E, Mathiowetz Alyssa J, Olzmann James A
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
bioRxiv. 2025 Aug 6:2025.08.05.668752. doi: 10.1101/2025.08.05.668752.
Ferroptosis, a regulated form of cell death driven by excessive lipid peroxidation, has emerged as a promising therapeutic target in cancer. Ferroptosis suppressor protein 1 (FSP1) is a critical regulator of ferroptosis resistance, yet the mechanisms controlling its expression and stability remain mostly unexplored. To uncover regulators of FSP1 abundance, we conducted CRISPR-Cas9 screens utilizing a genome-edited, dual-fluorescent FSP1 reporter cell line, identifying both transcriptional and post-translational mechanisms that determine FSP1 levels. Notably, we identified riboflavin kinase (RFK) and FAD synthase (FLAD1), enzymes which are essential for synthesizing flavin adenine dinucleotide (FAD) from vitamin B2, as key contributors to FSP1 stability. Biochemical and cellular analyses revealed that FAD binding is critical for FSP1 activity. FAD deficiency, and mutations blocking FSP1-FAD binding, triggered FSP1 degradation via a ubiquitin-proteasome pathway that involves the E3 ligase RNF8. Unlike other vitamins that inhibit ferroptosis by scavenging radicals, vitamin B2 supports ferroptosis resistance through FAD cofactor binding, ensuring proper FSP1 stability and function. This study provides a rich resource detailing mechanisms that regulate FSP1 abundance and highlights a novel connection between vitamin B2 metabolism and ferroptosis resistance with implications for therapeutic strategies targeting FSP1 in cancer.
铁死亡是一种由过度脂质过氧化驱动的程序性细胞死亡形式,已成为癌症中一个有前景的治疗靶点。铁死亡抑制蛋白1(FSP1)是铁死亡抗性的关键调节因子,但其表达和稳定性的调控机制大多仍未被探索。为了揭示FSP1丰度的调节因子,我们利用基因编辑的双荧光FSP1报告细胞系进行了CRISPR-Cas9筛选,确定了决定FSP1水平的转录和翻译后机制。值得注意的是,我们鉴定出核黄素激酶(RFK)和FAD合酶(FLAD1),这两种从维生素B2合成黄素腺嘌呤二核苷酸(FAD)所必需的酶,是FSP1稳定性的关键贡献者。生化和细胞分析表明,FAD结合对FSP1活性至关重要。FAD缺乏以及阻断FSP1-FAD结合的突变,通过涉及E3连接酶RNF8的泛素-蛋白酶体途径触发FSP1降解。与其他通过清除自由基来抑制铁死亡的维生素不同,维生素B2通过FAD辅因子结合来支持铁死亡抗性,确保FSP1的稳定性和功能正常。这项研究提供了丰富的资源,详细阐述了调节FSP1丰度的机制,并突出了维生素B2代谢与铁死亡抗性之间的新联系,对癌症中针对FSP1的治疗策略具有启示意义。