Suppr超能文献

ShinyEvents:协调纵向数据以进行真实世界生存估计。

ShinyEvents: harmonizing longitudinal data for real world survival estimation.

作者信息

Obermayer Alyssa, Davis Joshua, Talada Divya Priyanka, Teng Mingxiang, Eschrich Steven, Yin Vivien, Spakowicz Daniel, Dhrubo Dipankor, Rounbehler Robert J, Churchman Michelle L, Tarhini Ahmad A, Wang Xuefeng, Gupta Sumati, Markowitz Joseph, Goecks Jeremy, Li Roger, Rodriguez-Pessoa Rodrigo, Manley Brandon J, Tan Aik-Choon, Grass G Daniel, Chen Dung-Tsa, Shaw Timothy I

机构信息

H. Lee Moffitt Cancer Center and Research Institute.

The Ohio State University Comprehensive Cancer Center.

出版信息

Res Sq. 2025 Aug 6:rs.3.rs-7231850. doi: 10.21203/rs.3.rs-7231850/v1.

Abstract

Longitudinal data analysis of the patient's treatment course is critical to uncovering variables that influence outcomes. However, existing tools have significant limitations in integrating multilayered time-series data. Here, we developed ShinyEvents, a web-based framework for complex longitudinal data analysis. ShinyEvents allows users to upload data and generate interactive timelines of the patient's clinical events. Our tool can perform cohort-level analysis, including the assignment of treatment clusters and clinical endpoints. Our tool also provides informative cohort visualizations, such as a Sankey diagram of the treatment line and Swimmer diagram of the clinical course. Finally, our tool can infer a real-world progression-free survival (rwPFS) based on user-defined endpoints to perform Kaplan-Meier and Cox proportional hazards regression analysis. With these features, the tool can then associate the lines of treatment with clinical outcomes. Altogether, ShinyEvents facilitates the integration of multilayered longitudinal data and enables survival analysis in real-time. A live link to the tool is available https://shawlab-moffitt.shinyapps.io/shinyevents/.

摘要

对患者治疗过程进行纵向数据分析对于揭示影响治疗结果的变量至关重要。然而,现有工具在整合多层时间序列数据方面存在重大局限性。在此,我们开发了ShinyEvents,这是一个用于复杂纵向数据分析的基于网络的框架。ShinyEvents允许用户上传数据并生成患者临床事件的交互式时间线。我们的工具可以进行队列水平分析,包括治疗组的分配和临床终点的确定。我们的工具还提供信息丰富的队列可视化,例如治疗流程的桑基图和临床过程的游泳者图。最后,我们的工具可以根据用户定义的终点推断真实世界的无进展生存期(rwPFS),以进行 Kaplan-Meier 和 Cox 比例风险回归分析。借助这些功能,该工具可以将治疗线与临床结果相关联。总之,ShinyEvents有助于整合多层纵向数据并实现实时生存分析。该工具的实时链接为 https://shawlab-moffitt.shinyapps.io/shinyevents/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3c8/12340904/3d238ee1cb52/nihpp-rs7231850v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验