Suppr超能文献

提高肿瘤学真实世界数据的质量标准:多维度的方法。

Raising the Bar for Real-World Data in Oncology: Approaches to Quality Across Multiple Dimensions.

机构信息

Flatiron Health, Inc, New York, NY.

出版信息

JCO Clin Cancer Inform. 2024 Jan;8:e2300046. doi: 10.1200/CCI.23.00046.

Abstract

PURPOSE

Electronic health record (EHR)-based real-world data (RWD) are integral to oncology research, and understanding fitness for use is critical for data users. Complexity of data sources and curation methods necessitate transparency into how quality is approached. We describe the application of data quality dimensions in curating EHR-derived oncology RWD.

METHODS

A targeted review was conducted to summarize data quality dimensions in frameworks published by the European Medicines Agency, The National Institute for Healthcare and Excellence, US Food and Drug Administration, Duke-Margolis Center for Health Policy, and Patient-Centered Outcomes Research Institute. We then characterized quality processes applied to curation of Flatiron Health RWD, which originate from EHRs of a nationwide network of academic and community cancer clinics, across the summarized quality dimensions.

RESULTS

The primary quality dimensions across frameworks were (including subdimensions of availability, sufficiency, and representativeness) and (including subdimensions of accuracy, completeness, provenance, and timeliness). Flatiron Health RWD quality processes were aligned to each dimension. Relevancy to broad or specific use cases is optimized through data set size and variable breadth and depth. Accuracy is addressed using validation approaches, such as comparison with external or internal reference standards or indirect benchmarking, and verification checks for conformance, consistency, and plausibility, selected on the basis of feasibility and criticality of the variable to the intended use case. Completeness is assessed against expected source documentation; provenance by recording data transformation, management procedures, and auditable metadata; and timeliness by setting refresh frequency to minimize data lags.

CONCLUSION

Development of high-quality, scaled, EHR-based RWD requires integration of systematic processes across the data lifecycle. Approaches to quality are optimized through knowledge of data sources, curation processes, and use case needs. By addressing quality dimensions from published frameworks, Flatiron Health RWD enable transparency in determining fitness for real-world evidence generation.

摘要

目的

基于电子健康记录(EHR)的真实世界数据(RWD)是肿瘤学研究的重要组成部分,了解其适用性至关重要。数据源和管理方法的复杂性要求对质量的方法进行透明化。我们描述了在管理 EHR 衍生的肿瘤学 RWD 中应用数据质量维度的方法。

方法

进行了有针对性的审查,以总结欧洲药品管理局、英国国家卫生与保健卓越研究所、美国食品和药物管理局、杜克-马戈利斯卫生政策中心和患者中心的研究成果研究所发布的框架中的数据质量维度。然后,我们描述了应用于 Flatiron Health RWD 管理的质量流程,这些数据源自全国性学术和社区癌症诊所网络的 EHR,涵盖了总结的质量维度。

结果

各框架中的主要质量维度包括(包括可用性、充分性和代表性的子维度)和(包括准确性、完整性、出处和及时性的子维度)。Flatiron Health RWD 的质量流程与每个维度都保持一致。通过数据集的大小以及变量的广度和深度,优化了与广泛或特定用例的相关性。通过验证方法(例如与外部或内部参考标准进行比较,或间接基准测试,以及根据变量对预期用例的重要性和可行性选择合规性、一致性和合理性的验证检查)解决准确性问题。通过记录数据转换、管理程序和可审核元数据来评估出处;通过设置刷新频率来评估及时性,以最大程度地减少数据滞后。

结论

开发高质量、规模化的基于 EHR 的 RWD 需要在整个数据生命周期中整合系统的流程。通过了解数据源、管理流程和用例需求,可以优化质量方法。通过从已发布的框架中解决质量维度,Flatiron Health RWD 能够实现确定真实世界证据生成适用性的透明度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27a/10807898/19402630b2a6/cci-8-e2300046-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验