Suppr超能文献

探索计算神经科学中带状回归的期望最大化算法。

Exploring an EM-algorithm for banded regression in computational neuroscience.

作者信息

Fuglsang Søren A, Madsen Kristoffer H, Puonti Oula, Siebner Hartwig R, Hjortkjær Jens

机构信息

Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark.

Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.

出版信息

Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00155. eCollection 2024.

Abstract

Regression is a principal tool for relating brain responses to stimuli or tasks in computational neuroscience. This often involves fitting linear models with predictors that can be divided into groups, such as distinct stimulus feature subsets in encoding models or features of different neural response channels in decoding models. When fitting such models, it can be relevant to allow differential shrinkage of the different groups of regression weights. Here, we explore a framework that allows for straightforward definition and estimation of such models. We present an expectation-maximization algorithm for tuning hyperparameters that control shrinkage of groups of weights. We highlight properties, limitations, and potential use-cases of the model using simulated data. Next, we explore the model in the context of a BOLD fMRI encoding analysis and an EEG decoding analysis. Finally, we discuss cases where the model can be useful and scenarios where regularization procedures complicate model interpretation.

摘要

在计算神经科学中,回归是将大脑反应与刺激或任务相关联的主要工具。这通常涉及使用可分为不同组的预测变量来拟合线性模型,例如编码模型中的不同刺激特征子集或解码模型中不同神经反应通道的特征。在拟合此类模型时,允许不同组的回归权重有不同程度的收缩可能是有意义的。在这里,我们探索了一个框架,该框架允许对这类模型进行直接定义和估计。我们提出了一种期望最大化算法,用于调整控制权重组收缩的超参数。我们使用模拟数据突出了该模型的特性、局限性和潜在用例。接下来,我们在BOLD功能磁共振成像编码分析和脑电图解码分析的背景下探索该模型。最后,我们讨论了该模型可能有用的情况以及正则化程序使模型解释复杂化的场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c231/12247579/ccf62b8b6a7c/imag_a_00155_fig1.jpg

相似文献

1
Exploring an EM-algorithm for banded regression in computational neuroscience.
Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00155. eCollection 2024.
6
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.

本文引用的文献

1
Scaling laws for language encoding models in fMRI.
Adv Neural Inf Process Syst. 2023;36:21895-21907.
2
Many but not all deep neural network audio models capture brain responses and exhibit correspondence between model stages and brain regions.
PLoS Biol. 2023 Dec 13;21(12):e3002366. doi: 10.1371/journal.pbio.3002366. eCollection 2023 Dec.
3
Feature-space selection with banded ridge regression.
Neuroimage. 2022 Dec 1;264:119728. doi: 10.1016/j.neuroimage.2022.119728. Epub 2022 Nov 8.
4
SURPRISES IN HIGH-DIMENSIONAL RIDGELESS LEAST SQUARES INTERPOLATION.
Ann Stat. 2022 Apr;50(2):949-986. doi: 10.1214/21-aos2133. Epub 2022 Apr 7.
5
Music genre neuroimaging dataset.
Data Brief. 2021 Dec 4;40:107675. doi: 10.1016/j.dib.2021.107675. eCollection 2022 Feb.
6
Accurate Decoding of Imagined and Heard Melodies.
Front Neurosci. 2021 Aug 5;15:673401. doi: 10.3389/fnins.2021.673401. eCollection 2021.
7
Shared component analysis.
Neuroimage. 2021 Feb 1;226:117614. doi: 10.1016/j.neuroimage.2020.117614. Epub 2020 Dec 8.
8
Correspondence of categorical and feature-based representations of music in the human brain.
Brain Behav. 2021 Jan;11(1):e01936. doi: 10.1002/brb3.1936. Epub 2020 Nov 8.
9
Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm.
Neuroimage. 2021 Jan 15;225:117411. doi: 10.1016/j.neuroimage.2020.117411. Epub 2020 Oct 8.
10
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验