Suppr超能文献

共享成分分析。

Shared component analysis.

机构信息

Laboratoire des Systèmes Perceptifs, UMR 8248, CNRS, France; Département d'Etudes Cognitives, Ecole Normale Supérieure PSL, France; UCL Ear Institute, United Kingdom.

出版信息

Neuroimage. 2021 Feb 1;226:117614. doi: 10.1016/j.neuroimage.2020.117614. Epub 2020 Dec 8.

Abstract

This paper proposes Shared Component Analysis (SCA) as an alternative to Principal Component Analysis (PCA) for the purpose of dimensionality reduction of neuroimaging data. The trend towards larger numbers of recording sensors, pixels or voxels leads to richer data, with finer spatial resolution, but it also inflates the cost of storage and computation and the risk of overfitting. PCA can be used to select a subset of orthogonal components that explain a large fraction of variance in the data. This implicitly equates variance with relevance, and for neuroimaging data such as electroencephalography (EEG) or magnetoencephalography (MEG) that assumption may be inappropriate if (latent) sources of interest are weak relative to competing sources. SCA instead assumes that components that contribute to observable signals on multiple sensors are of likely interest, as may be the case for deep sources within the brain as a result of current spread. In SCA, steps of normalization and PCA are applied iteratively, linearly transforming the data such that components more widely shared across channels appear first in the component series. The paper explains the motivation, defines the algorithm, evaluates the outcome, and sketches a wider strategy for dimensionality reduction of which this algorithm is an example. SCA is intended as a plug-in replacement for PCA for the purpose of dimensionality reduction.

摘要

本文提出了共享成分分析(SCA)作为主成分分析(PCA)的替代方法,用于降低神经影像学数据的维度。随着记录传感器、像素或体素数量的增加,数据变得更加丰富,空间分辨率也更加精细,但同时也增加了存储和计算成本以及过拟合的风险。PCA 可以用于选择一组解释数据中大部分方差的正交成分。这隐含地将方差与相关性等同起来,但对于神经影像学数据(如脑电图(EEG)或脑磁图(MEG))来说,如果(潜在)感兴趣的源相对于竞争源较弱,这种假设可能不合适。SCA 则假设对多个传感器上的可观测信号有贡献的成分可能是有趣的,因为在大脑深部的电流扩散可能导致这种情况。在 SCA 中,归一化和 PCA 的步骤是迭代应用的,通过线性变换数据,使得在组件系列中首先出现在多个通道中广泛共享的组件。本文解释了动机、定义了算法、评估了结果,并概述了一种更广泛的降维策略,该算法就是其中的一个例子。SCA 旨在作为 PCA 的插件替代品,用于降低维度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验