Adame-Gonzalez Walter, Brzezinski-Rittner Aliza, Zeighami Yashar, Chakravarty M Mallar, Farivar Reza, Dadar Mahsa
Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
Cerebral Imaging Centre - Douglas Research University Hospital, Verdun, Quebec, Canada.
Imaging Neurosci (Camb). 2024 Nov 21;2. doi: 10.1162/imag_a_00374. eCollection 2024.
Recent human magnetic resonance imaging (MRI) studies continually push the boundaries of spatial resolution as a means to enhance levels of neuroanatomical detail and increase the accuracy and sensitivity of derived brain morphometry measures. However, acquisitions required to achieve these resolutions have a higher noise floor, potentially impacting segmentation and morphometric analysis results. This study proposes a novel, fast, robust, and resolution-invariant deep learning method to denoise structural human brain MRIs. We explore denoising of T1-weighted (T1w) brain images from varying field strengths (1.5T to 7T), voxel sizes (1.2 mm to 250 µm), scanner vendors (Siemens, GE, and Phillips), and diseased and healthy participants from a wide age range (young adults to aging individuals). Our proposed Fast-Optimized Network for Denoising through residual Unified Ensembles (FONDUE) method demonstrated stable denoising capabilities across multiple resolutions with performance on par or superior to the state-of-the-art methods while being several orders of magnitude faster at low relative cost when using a dedicated Graphics Processing Unit (GPU). FONDUE achieved the best performance on at least one of the four denoising-performance metrics on all the test datasets used, showing its generalization capabilities and stability. Due to its high-quality performance, robustness, fast execution times, and relatively low-GPU memory requirements, as well as its open-source public availability, FONDUE can be widely used for structural MRI denoising, especially in large-cohort studies. We have made the FONDUE repository and all training and evaluation scripts as well as the trained weights available athttps://github.com/waadgo/FONDUE.
最近的人类磁共振成像(MRI)研究不断突破空间分辨率的界限,以此来增强神经解剖细节水平,并提高衍生脑形态测量指标的准确性和敏感性。然而,要实现这些分辨率所需的采集具有更高的本底噪声,这可能会影响分割和形态测量分析结果。本研究提出了一种新颖、快速、稳健且分辨率不变的深度学习方法,用于对人类脑部结构MRI进行去噪。我们探索了不同场强(1.5T至7T)、体素大小(1.2毫米至250微米)、扫描仪供应商(西门子、通用电气和飞利浦)以及来自广泛年龄范围(年轻人到老年人)的患病和健康参与者的T1加权(T1w)脑图像的去噪。我们提出的通过残差统一集成进行去噪的快速优化网络(FONDUE)方法在多种分辨率下都展示了稳定的去噪能力,其性能与现有最先进方法相当或更优,同时在使用专用图形处理单元(GPU)时,以较低的相对成本快几个数量级。FONDUE在所有使用的测试数据集上,在四个去噪性能指标中的至少一个上取得了最佳性能,显示了其泛化能力和稳定性。由于其高质量性能、稳健性、快速执行时间、相对较低的GPU内存要求,以及开源的公共可用性,FONDUE可广泛用于结构MRI去噪,特别是在大型队列研究中。我们已将FONDUE存储库、所有训练和评估脚本以及训练好的权重发布在https://github.com/waadgo/FONDUE 。