Cox Christopher R, Rogers Timothy T, Shimotake Akihiro, Kikuchi Takayuki, Kunieda Takeharu, Miyamoto Susumu, Takahashi Ryosuke, Matsumoto Riki, Ikeda Akio, Lambon Ralph Matthew A
Department of Psychology, Louisiana State University, Baton Rouge, LA, United States.
Department of Psychology, University of Wisconsin, Madison, WI, United States.
Imaging Neurosci (Camb). 2024 Feb 22;2. doi: 10.1162/imag_a_00093. eCollection 2024.
Neurocognitive models of semantic memory have proposed that the ventral anterior temporal lobes (vATLs) encode a graded and multidimensional semantic space-yet neuroimaging studies seeking brain regions that encode semantic structure rarely identify these areas. In simulations, we show that this discrepancy may arise from a crucial mismatch between theory and analysis approach. Utilizing an analysis recently formulated to investigate graded multidimensional representations, (RSL), we decoded semantic structure from ECoG data collected from the vATL cortical surface while participants named line drawings of common items. The results reveal a graded, multidimensional semantic space encoded in neural activity across the vATL, which evolves over time and simultaneously expresses both broad and finer-grained semantic structure among animate and inanimate concepts. The work resolves the apparent discrepancy within the semantic cognition literature and, more importantly, suggests a new approach to discovering representational structure in neural data more generally.
语义记忆的神经认知模型提出,腹侧前颞叶(vATL)编码一个分级且多维的语义空间——然而,旨在寻找编码语义结构的脑区的神经影像学研究很少能识别出这些区域。在模拟中,我们表明这种差异可能源于理论与分析方法之间的关键不匹配。利用最近为研究分级多维表征而制定的一种分析方法(RSL),我们从vATL皮质表面收集的脑电信号数据中解码语义结构,同时让参与者为常见物品的线条图命名。结果揭示了一个在vATL神经活动中编码的分级多维语义空间,它随时间演变,同时在有生命和无生命概念中表达广泛和更细粒度的语义结构。这项工作解决了语义认知文献中明显的差异,更重要的是,它更普遍地提出了一种在神经数据中发现表征结构的新方法。