Department of Psychology, Louisiana State University, Baton Rouge, Louisiana 70803
Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706.
J Neurosci. 2021 Feb 3;41(5):1019-1032. doi: 10.1523/JNEUROSCI.0904-20.2020. Epub 2020 Dec 17.
The human cortex encodes information in complex networks that can be anatomically dispersed and variable in their microstructure across individuals. Using simulations with neural network models, we show that contemporary statistical methods for functional brain imaging-including univariate contrast, searchlight multivariate pattern classification, and whole-brain decoding with L1 or L2 regularization-each have critical and complementary blind spots under these conditions. We then introduce the sparse-overlapping-sets (SOS) LASSO-a whole-brain multivariate approach that exploits structured sparsity to find network-distributed information-and show in simulation that it captures the advantages of other approaches while avoiding their limitations. When applied to fMRI data to find neural responses that discriminate visually presented faces from other visual stimuli, each method yields a different result, but existing approaches all support the canonical view that face perception engages localized areas in posterior occipital and temporal regions. In contrast, SOS LASSO uncovers a network spanning all four lobes of the brain. The result cannot reflect spurious selection of out-of-system areas because decoding accuracy remains exceedingly high even when canonical face and place systems are removed from the dataset. When used to discriminate visual scenes from other stimuli, the same approach reveals a localized signal consistent with other methods-illustrating that SOS LASSO can detect both widely distributed and localized representational structure. Thus, structured sparsity can provide an unbiased method for testing claims of functional localization. For faces and possibly other domains, such decoding may reveal representations more widely distributed than previously suspected. Brain systems represent information as patterns of activation over neural populations connected in networks that can be widely distributed anatomically, variable across individuals, and intermingled with other networks. We show that four widespread statistical approaches to functional brain imaging have critical blind spots in this scenario and use simulations with neural network models to illustrate why. We then introduce a new approach designed specifically to find radically distributed representations in neural networks. In simulation and in fMRI data collected in the well studied domain of face perception, the new approach discovers extensive signal missed by the other methods-suggesting that prior functional imaging work may have significantly underestimated the degree to which neurocognitive representations are distributed and variable across individuals.
人类大脑皮层在复杂网络中对信息进行编码,这些网络在个体之间可能具有解剖学上的分散性和微观结构的可变性。我们使用神经网络模型的模拟表明,当代用于功能脑成像的统计方法——包括单变量对比、搜索光多变量模式分类以及使用 L1 或 L2 正则化的全脑解码——在这些情况下都存在关键且互补的盲点。然后,我们引入稀疏重叠集(SOS)LASSO——一种利用结构稀疏性来寻找网络分布式信息的全脑多变量方法,并在模拟中表明它结合了其他方法的优势,同时避免了它们的局限性。当应用于 fMRI 数据以寻找区分视觉呈现的面孔与其他视觉刺激的神经反应时,每种方法都会产生不同的结果,但现有的方法都支持经典观点,即面孔感知涉及后枕叶和颞叶区域的局部化区域。相比之下,SOS LASSO 揭示了一个跨越大脑所有四个叶的网络。该结果不能反映出系统外区域的虚假选择,因为即使从数据集中移除经典的面孔和位置系统,解码精度仍然非常高。当用于区分视觉场景与其他刺激时,相同的方法揭示了与其他方法一致的局部信号——这表明 SOS LASSO 可以检测到广泛分布和局部化的表示结构。因此,结构稀疏性可以为测试功能定位的主张提供一种无偏方法。对于面孔和可能其他领域,这种解码可能会揭示比以前怀疑的更广泛分布的表示。大脑系统通过连接在网络中的神经元群体的激活模式来表示信息,这些网络在解剖学上可以广泛分布,在个体之间具有可变性,并且与其他网络交织在一起。我们表明,用于功能脑成像的四种广泛使用的统计方法在这种情况下存在关键的盲点,并使用神经网络模型的模拟来说明原因。然后,我们引入了一种专门用于在神经网络中找到激进分布表示的新方法。在模拟和在面孔感知这一经过充分研究的领域中收集的 fMRI 数据中,新方法发现了其他方法错过的广泛信号——这表明先前的功能成像工作可能大大低估了神经认知表示在个体之间分布和变化的程度。