Hamilton Jake, Xu Kathy, Geremia Nicole, Prado Vania F, Prado Marco A M, Brown Arthur, Baron Corey A
Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Canada.
Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.
Imaging Neurosci (Camb). 2024 Jan 5;2. doi: 10.1162/imag_a_00055. eCollection 2024.
Frequency-dependent diffusion MRI (dMRI) using oscillating gradient encoding and diffusional kurtosis imaging (DKI) techniques have been shown to provide additional insight into tissue microstructure compared to conventional dMRI. However, a technical challenge when combining these techniques is that the generation of the large b-values (≥2000 s/mm) required for DKI is difficult when using oscillating gradient diffusion encoding. While efficient encoding schemes can enable larger b-values by maximizing multiple gradient channels simultaneously, they do not have sufficient directions to enable the estimation of directional kurtosis parameters. Accordingly, we investigate a DKI fitting algorithm that combines axisymmetric DKI fitting, a prior that enforces the same axis of symmetry for all oscillating gradient frequencies, and spatial regularization, which together enable robust DKI fitting for a 10-direction scheme that offers double the b-value compared to traditional encoding schemes. Using data from mice (oscillating frequencies of 0, 60, and 120 Hz) and humans (0 Hz only), we first show that axisymmetric DKI fitting provides comparable or even slightly improved image quality as compared to kurtosis tensor fitting, and improved DKI map quality when using an efficient encoding scheme with averaging as compared to a traditional scheme with more encoding directions. We also demonstrate that enforcing consistent axes of symmetries across frequencies improves fitting quality, and spatial regularization during fitting preserves spatial features better than using Gaussian filtering prior to fitting, which is an oft-reported pre-processing step for DKI. Thus, the use of an efficient 10-direction scheme combined with the proposed DKI fitting algorithm provides robust maps of frequency-dependent directional kurtosis which may offer increased sensitivity to cytoarchitectural changes that occur at various cellular spatial scales over the course of healthy aging, and due to pathological alterations.
与传统扩散加权磁共振成像(dMRI)相比,使用振荡梯度编码的频率依赖扩散磁共振成像(dMRI)和扩散峰度成像(DKI)技术已被证明能提供对组织微观结构的更多见解。然而,将这些技术结合时面临的一个技术挑战是,在使用振荡梯度扩散编码时,生成DKI所需的大b值(≥2000 s/mm²)很困难。虽然高效编码方案可以通过同时最大化多个梯度通道来实现更大的b值,但它们没有足够的方向来估计方向峰度参数。因此,我们研究了一种DKI拟合算法,该算法结合了轴对称DKI拟合(一种对所有振荡梯度频率强制使用相同对称轴的先验)和空间正则化,这两者共同为一种10方向方案实现了稳健的DKI拟合,该方案的b值是传统编码方案的两倍。使用来自小鼠(振荡频率为0、60和120 Hz)和人类(仅0 Hz)的数据,我们首先表明,与峰度张量拟合相比,轴对称DKI拟合提供了相当甚至略有改善的图像质量,并且与具有更多编码方向的传统方案相比,在使用具有平均的高效编码方案时,DKI图质量得到了改善。我们还证明,在不同频率上强制使用一致的对称轴可以提高拟合质量,并且拟合过程中的空间正则化比在拟合前使用高斯滤波(这是DKI经常报道的预处理步骤)能更好地保留空间特征。因此,使用高效的10方向方案结合所提出的DKI拟合算法,可以提供稳健的频率依赖方向峰度图,这可能会提高对健康衰老过程中以及由于病理改变在各种细胞空间尺度上发生的细胞结构变化的敏感性。