Suppr超能文献

功能磁共振成像时间序列数据的 MP-PCA 去噪可能导致人工激活“扩散”。

MP-PCA denoising of fMRI time-series data can lead to artificial activation "spreading".

机构信息

Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.

Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.

出版信息

Neuroimage. 2023 Jun;273:120118. doi: 10.1016/j.neuroimage.2023.120118. Epub 2023 Apr 14.

Abstract

MP-PCA denoising has become the method of choice for denoising MRI data since it provides an objective threshold to separate the signal components from unwanted thermal noise components. In rodents, thermal noise in the coils is an important source of noise that can reduce the accuracy of activation mapping in fMRI. Further confounding this problem, vendor data often contains zero-filling and other post-processing steps that may violate MP-PCA assumptions. Here, we develop an approach to denoise vendor data and assess activation "spreading" caused by MP-PCA denoising in rodent task-based fMRI data. Data was obtained from N = 3 mice using conventional multislice and ultrafast fMRI acquisitions (1 s and 50 ms temporal resolution, respectively), using a visual stimulation paradigm. MP-PCA denoising produced SNR gains of 64% and 39%, and Fourier Spectral Amplitude (FSA) increases in BOLD maps of 9% and 7% for multislice and ultrafast data, respectively, when using a small [2 2] denoising window. Larger windows provided higher SNR and FSA gains with increased spatial extent of activation that may or may not represent real activation. Simulations showed that MP-PCA denoising can incur activation "spreading" with increased false positive rate and smoother functional maps due to local "bleeding" of principal components, and that the optimal denoising window for improved specificity of functional mapping, based on Dice score calculations, depends on the data's tSNR and functional CNR. This "spreading" effect applies also to another recently proposed low-rank denoising method (NORDIC), although to a lesser degree. Our results bode well for enhancing spatial and/or temporal resolution in future fMRI work, while taking into account the sensitivity/specificity trade-offs of low-rank denoising methods.

摘要

MP-PCA 去噪已成为 MRI 数据去噪的首选方法,因为它提供了一个客观的阈值,可以将信号分量与不需要的热噪声分量分离。在啮齿动物中,线圈中的热噪声是一种重要的噪声源,可能会降低 fMRI 中激活图的准确性。进一步加剧这个问题的是,供应商数据通常包含零填充和其他可能违反 MP-PCA 假设的后处理步骤。在这里,我们开发了一种方法来对供应商数据进行去噪,并评估 MP-PCA 去噪在啮齿动物任务 fMRI 数据中引起的激活“扩散”。使用传统的多层和超快 fMRI 采集(分别为 1 秒和 50 毫秒的时间分辨率),通过视觉刺激范式,从 N=3 只小鼠中获得了数据。使用小的[2×2]去噪窗口时,MP-PCA 去噪分别使多层和超快数据的 SNR 增益提高了 64%和 39%,BOLD 图的傅里叶谱幅度(FSA)增加了 9%和 7%。较大的窗口提供了更高的 SNR 和 FSA 增益,激活的空间范围也随之增加,这些可能代表也可能不代表真实的激活。模拟表明,由于主成分的局部“泄漏”,MP-PCA 去噪会导致激活“扩散”,从而导致假阳性率增加和功能图更平滑,基于 Dice 评分计算,提高功能映射特异性的最佳去噪窗口取决于数据的 tSNR 和功能 CNR。这种“扩散”效应也适用于另一种最近提出的低秩去噪方法(NORDIC),尽管程度较小。我们的结果为在考虑低秩去噪方法的灵敏度/特异性权衡的情况下,在未来的 fMRI 工作中提高空间和/或时间分辨率提供了良好的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验