Suppr超能文献

通过潜在类别分析识别急性缺血性中风患者的隐藏风险模式。

Hidden risk patterns among acute ischemic stroke patients identified by latent class analysis.

作者信息

Gu Lei, Sun Zhezhe, Hou Xiangqing, Zhang Wanli, Deng Binbin, Chen Xiaoyang, Li Xiang, Cheng Yifan

机构信息

The Department of Rehabilitation Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China.

Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China.

出版信息

Front Neurol. 2025 Jul 29;16:1597361. doi: 10.3389/fneur.2025.1597361. eCollection 2025.

Abstract

BACKGROUND

Few studies focus on the comprehensive influence of multiple risk factors on the follow-up outcomes of acute ischemic stroke (AIS) patients. To fill this gap, this study aims to identify different subgroups with specific clinical characteristics and risk patterns among patients with AIS and to provide individualized treatment plans accordingly.

METHODS

We obtained clinical follow-up data from 448 AIS patients within 72 h of admission. Subgroup patients were characterized by latent class analysis (LCA) using 5 risk factors of AIS. Cox proportional hazard regression analysis was used to explore the relationship between classified risk factor patterns and functional outcomes of patients with AIS at 3 months.

FINDINGS

We obtained two risk factor patterns as "Elderly with low lymphocytes," and "Participants with low neutrophils and high lymphocytes." Class 1 ( = 214, 47.8%) had lower lymphocytes levels and was mainly elderly. Patients in Class 2 ( = 234, 53.2%) had higher lymphocytes levels and lower neutrophils levels than those in Class 1. In addition, CRP levels were mostly low in both Classes 1 and 2. There was a significant difference in poor functional outcomes between the two patterns after adjusting various confounders ( < 0.001). Compared with patients in Class 2, patients in Class 1 had a higher risk of adverse functional outcomes (adjusted Hazard Ratio, 3.21; 95% confidence interval: 2.07-4.98;  < 0.001).

INTERPRETATION

In our study, LCA was used to identify a 2-Class LCA model that was shown distinct clinical features and laboratory measurements among AIS patients. Our findings are beneficial for health management and therapy.

摘要

背景

很少有研究关注多种风险因素对急性缺血性卒中(AIS)患者随访结局的综合影响。为填补这一空白,本研究旨在识别AIS患者中具有特定临床特征和风险模式的不同亚组,并据此提供个体化治疗方案。

方法

我们获取了448例AIS患者入院72小时内的临床随访数据。使用AIS的5个风险因素通过潜在类别分析(LCA)对亚组患者进行特征描述。采用Cox比例风险回归分析探讨分类后的风险因素模式与AIS患者3个月时功能结局之间的关系。

结果

我们获得了两种风险因素模式,即“淋巴细胞水平低的老年人”和“中性粒细胞水平低且淋巴细胞水平高的参与者”。第1组(n = 214,47.8%)淋巴细胞水平较低,且主要为老年人。第2组(n = 234,53.2%)患者的淋巴细胞水平高于第1组,中性粒细胞水平低于第1组。此外,第1组和第2组的CRP水平大多较低。调整各种混杂因素后,两种模式在功能结局不良方面存在显著差异(P < 0.001)。与第2组患者相比,第1组患者出现不良功能结局的风险更高(调整后的风险比,3.21;95%置信区间:2.07 - 4.98;P < 0.001)。

解读

在我们的研究中,LCA用于识别一个2类LCA模型,该模型在AIS患者中表现出不同的临床特征和实验室测量结果。我们的研究结果有助于健康管理和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/681d/12339565/bba166b04183/fneur-16-1597361-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验