Suppr超能文献

用于运动损伤诊断中增强型SPECT/CT成像的多模态学习

Multimodal learning for enhanced SPECT/CT imaging in sports injury diagnosis.

作者信息

Jiang Zhengzheng, Shen YaWen

机构信息

Sports College, Shandong Sports University, Rizhao, Shandong, China.

Zhongyuan University of Technology, Zhengzhou, China.

出版信息

Front Physiol. 2025 Jul 29;16:1605426. doi: 10.3389/fphys.2025.1605426. eCollection 2025.

Abstract

INTRODUCTION

Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging plays a critical role in sports injury diagnosis by offering both anatomical and functional insights. However, traditional SPECT/CT techniques often suffer from poor image quality, low spatial resolution, and limited capacity for integrating multiple data sources, which can hinder accurate diagnosis and intervention.

METHODS

To address these limitations, this study proposes a novel multimodal learning framework that enhances SPECT/CT imaging through biomechanical data integration and deep learning. Our method introduces a hybrid model combining convolutional neural networks for spatial feature extraction and transformer-based temporal attention for sequential pattern recognition. This study further incorporates a biomechanics-aware injury detection module (BID-Net), which leverages kinematic signals, motion data, and physiological context to refine lesion detection accuracy.

RESULTS

Experimental results on a curated sports injury dataset demonstrate that our framework significantly improves image clarity, diagnostic precision, and interpretability over traditional approaches.

DISCUSSION

The integration of biomechanical constraints and adaptive attention mechanisms not only enhances SPECT/CT imaging quality but also bridges the gap between AI-driven analytics and clinical practice in sports medicine. Our study presents a promising direction for intelligent, real-time diagnostic tools capable of supporting injury prevention, early detection, and rehabilitation planning in athletic care.

摘要

引言

单光子发射计算机断层扫描/计算机断层扫描(SPECT/CT)成像通过提供解剖学和功能方面的见解,在运动损伤诊断中发挥着关键作用。然而,传统的SPECT/CT技术往往存在图像质量差、空间分辨率低以及整合多个数据源的能力有限等问题,这可能会阻碍准确的诊断和干预。

方法

为了解决这些局限性,本研究提出了一种新颖的多模态学习框架,通过生物力学数据整合和深度学习来增强SPECT/CT成像。我们的方法引入了一种混合模型,该模型结合了用于空间特征提取的卷积神经网络和用于序列模式识别的基于Transformer的时间注意力机制。本研究进一步纳入了一个生物力学感知损伤检测模块(BID-Net),该模块利用运动学信号、运动数据和生理背景来提高病变检测的准确性。

结果

在一个精心策划的运动损伤数据集上的实验结果表明,我们的框架在图像清晰度、诊断精度和可解释性方面比传统方法有显著提高。

讨论

生物力学约束和自适应注意力机制的整合不仅提高了SPECT/CT成像质量,还弥合了人工智能驱动的分析与运动医学临床实践之间的差距。我们的研究为能够支持运动护理中的损伤预防、早期检测和康复计划的智能实时诊断工具提供了一个有前景的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fca/12339564/558006e09a60/fphys-16-1605426-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验