Zong Yongshuo, Aodha Oisin Mac, Hospedales Timothy M
IEEE Trans Pattern Anal Mach Intell. 2025 Jul;47(7):5299-5318. doi: 10.1109/TPAMI.2024.3429301.
Multimodal learning, which aims to understand and analyze information from multiple modalities, has achieved substantial progress in the supervised regime in recent years. However, the heavy dependence on data paired with expensive human annotations impedes scaling up models. Meanwhile, given the availability of large-scale unannotated data in the wild, self-supervised learning has become an attractive strategy to alleviate the annotation bottleneck. Building on these two directions, self-supervised multimodal learning (SSML) provides ways to learn from raw multimodal data. In this survey, we provide a comprehensive review of the state-of-the-art in SSML, in which we elucidate three major challenges intrinsic to self-supervised learning with multimodal data: 1) learning representations from multimodal data without labels, 2) fusion of different modalities, and 3) learning with unaligned data. We then detail existing solutions to these challenges. Specifically, we consider 1) objectives for learning from multimodal unlabeled data via self-supervision, 2) model architectures from the perspective of different multimodal fusion strategies, and 3) pair-free learning strategies for coarse-grained and fine-grained alignment. We also review real-world applications of SSML algorithms in diverse fields, such as healthcare, remote sensing, and machine translation. Finally, we discuss challenges and future directions for SSML.
多模态学习旨在理解和分析来自多种模态的信息,近年来在监督学习领域取得了显著进展。然而,对数据的严重依赖以及昂贵的人工标注阻碍了模型的扩展。与此同时,鉴于大量未标注的自然数据的可用性,自监督学习已成为缓解标注瓶颈的一种有吸引力的策略。基于这两个方向,自监督多模态学习(SSML)提供了从原始多模态数据中学习的方法。在本次综述中,我们对SSML的最新进展进行了全面回顾,阐明了使用多模态数据进行自监督学习所固有的三个主要挑战:1)从无标签的多模态数据中学习表示;2)不同模态的融合;3)处理未对齐数据的学习。然后,我们详细介绍了针对这些挑战的现有解决方案。具体而言,我们考虑:1)通过自监督从多模态无标签数据中学习的目标;2)从不同多模态融合策略角度出发的模型架构;3)用于粗粒度和细粒度对齐的无配对学习策略。我们还回顾了SSML算法在医疗保健、遥感和机器翻译等不同领域的实际应用。最后,我们讨论了SSML面临的挑战和未来发展方向。