Domingos Catarina, Esteves Inês, Fouto Ana R, Ruiz-Tagle Amparo, Caetano Gina, Caballero-Gaudes César, Figueiredo Patrícia
Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
Basque Center on Cognition Brain and Language, San Sebastián-Donostia, Spain.
Imaging Neurosci (Camb). 2025 Jul 14;3. doi: 10.1162/IMAG.a.80. eCollection 2025.
Cerebrovascular reactivity (CVR) can be mapped noninvasively using blood oxygenation level dependent (BOLD) fMRI during a breath-hold (BH) task. Previous studies showed that the BH BOLD response is best modeled as the convolution of the partial pressure of end-tidal CO2 (PetCO2) with a canonical hemodynamic response function (HRF). However, previous model comparisons employed a global bulk time lag, which is now well accepted to provide only a rough approximation of the heterogeneous distribution of response latencies across the brain. Here, we investigate the best modeling approach for mapping CVR based on BH BOLD-fMRI data, when using a lagged general linear model approach for voxelwise lag optimization. In a group of 14 healthy participants, we compared two types of regressors (PetCO2 and Block), and three convolution models (no convolution; convolution with a single gamma HRF; and convolution with a double gamma HRF), as well as a range of HRF delays and dispersions (for models with convolution). Convolution with a single gamma HRF yielded the greatest CVR values in PetCO2 models, while a double gamma HRF performed better for block models. Although PetCO2-based regressors generally outperformed block-based regressors, as expected, the latter may be an appropriate alternative in cases of poor CO recordings. Overall, our results support the use of specific modeling approaches for CVR mapping based on end-expiration BH BOLD-fMRI, including the voxelwise optimization of the lag.
在屏气(BH)任务期间,可以使用基于血氧水平依赖(BOLD)的功能磁共振成像(fMRI)对脑血管反应性(CVR)进行无创性映射。先前的研究表明,屏气BOLD反应最好建模为呼气末二氧化碳分压(PetCO2)与典型血流动力学反应函数(HRF)的卷积。然而,先前的模型比较采用了全局整体时间延迟,现在人们普遍认为这种延迟只能粗略地近似大脑中反应潜伏期的异质分布。在此,我们研究了在使用滞后一般线性模型方法进行体素级延迟优化时,基于屏气BOLD-fMRI数据映射CVR的最佳建模方法。在一组14名健康参与者中,我们比较了两种类型的回归变量(PetCO2和Block)、三种卷积模型(无卷积;与单个伽马HRF卷积;与双伽马HRF卷积),以及一系列HRF延迟和离散度(对于有卷积的模型)。在PetCO2模型中,与单个伽马HRF卷积产生了最大的CVR值,而双伽马HRF在块模型中表现更好。尽管基于PetCO2的回归变量通常优于基于块的回归变量,但正如预期的那样,在CO记录不佳的情况下,后者可能是一种合适的替代方法。总体而言,我们的结果支持使用基于呼气末屏气BOLD-fMRI进行CVR映射的特定建模方法,包括体素级延迟优化。