Rafipoor Hossein, Lange Frederik J, Arthofer Christoph, Cottaar Michiel, Jbabdi Saad
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom.
Imaging Neurosci (Camb). 2025 Jan 15;3. doi: 10.1162/imag_a_00436. eCollection 2025.
While diffusion MRI is typically used to estimate microstructural properties of tissue in volumetric elements (voxels), more specificity can be obtained by separately modelling the properties of individual fibre populations within a voxel. In the context of cross-subjects modelling, these fixel-based analyses are usually performed in two stages. Crossing fibre modelling is first performed in each subject to produce fixels, and these are subsequently modelled across subjects following registration and fibre population reassignment. Here, we introduce a new hierarchical framework for fitting crossing fibre models to diffusion MRI data in a population of subjects. This hierarchical setup guarantees that the crossing fibres are consistent by construction and, therefore, comparable across subjects. We propose an expectation-maximisation algorithm to fit the model, which can scale to large number of subjects. This approach produces a template for crossing fibre populations in the white matter which can be used to estimate fibre-specific parameters that are consistent across subjects, hence providing data that are by construction suitable for fixel-based statistical analyses.
虽然扩散磁共振成像通常用于估计体素中组织的微观结构特性,但通过分别对体素内单个纤维群的特性进行建模,可以获得更高的特异性。在跨受试者建模的背景下,这些基于固定点的分析通常分两个阶段进行。首先在每个受试者中进行交叉纤维建模以生成固定点,随后在配准和纤维群重新分配后对这些固定点进行跨受试者建模。在此,我们引入了一个新的分层框架,用于将交叉纤维模型拟合到一组受试者的扩散磁共振成像数据中。这种分层设置保证了交叉纤维在构建时是一致的,因此在不同受试者之间具有可比性。我们提出了一种期望最大化算法来拟合模型,该算法可以扩展到大量受试者。这种方法生成了一个白质中交叉纤维群的模板,可用于估计受试者间一致的纤维特异性参数,从而提供基于固定点的统计分析所需的数据。