Sanz-Robinson Jacob, Wang Michelle, McPherson Brent, Chatelain Yohan, Kennedy David, Glatard Tristan, Poline Jean-Baptiste
NeuroDataScience-ORIGAMI Lab, McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada.
Imaging Neurosci (Camb). 2025 Jul 21;3. doi: 10.1162/IMAG.a.79. eCollection 2025.
Researchers in brain imaging have access to a multitude of analysis tools, many of which carry out the same or similar tasks but yield different results when applied to the same data. This analytical flexibility often undermines reproducibility and raises concerns about the robustness of neuroimaging studies. However, the array of software packages to investigate and address analytical flexibility is decentralized, scattered, and not well documented. Consequently, researchers often lack the necessary information and protocols to buttress the reliability of their findings across analytical tools. This review catalogs and describes software platforms (i.e., software or computational libraries) that can be used to address result variability arising from computational pipelines and environments and explores the use of computing platforms and neuroimaging pipeline frameworks in addressing this issue. This study offers guidance to the research community on accessing, understanding, and utilizing these platforms to address brain imaging analytical flexibility. Additionally, the article provides specific recommendations tailored to different user groups, considering the tools they intend to use with these platforms and their computational constraints.
脑成像研究人员可以使用大量的分析工具,其中许多工具执行相同或相似的任务,但应用于相同数据时会产生不同的结果。这种分析灵活性常常破坏可重复性,并引发对神经成像研究稳健性的担忧。然而,用于研究和解决分析灵活性的一系列软件包是分散的、零散的,且记录不完善。因此,研究人员往往缺乏必要的信息和方案来支撑其研究结果在各种分析工具间的可靠性。本综述编目并描述了可用于解决因计算流程和环境导致的结果变异性的软件平台(即软件或计算库),并探讨了计算平台和神经成像流程框架在解决这一问题中的应用。本研究为研究界提供了关于访问、理解和利用这些平台以解决脑成像分析灵活性的指导。此外,考虑到不同用户群体打算与这些平台一起使用的工具及其计算限制,本文还提供了针对不同用户群体的具体建议。