Suppr超能文献

用于研究神经影像学分析灵活性的开源平台。

Open-source platforms to investigate analytical flexibility in neuroimaging.

作者信息

Sanz-Robinson Jacob, Wang Michelle, McPherson Brent, Chatelain Yohan, Kennedy David, Glatard Tristan, Poline Jean-Baptiste

机构信息

NeuroDataScience-ORIGAMI Lab, McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.

Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada.

出版信息

Imaging Neurosci (Camb). 2025 Jul 21;3. doi: 10.1162/IMAG.a.79. eCollection 2025.

Abstract

Researchers in brain imaging have access to a multitude of analysis tools, many of which carry out the same or similar tasks but yield different results when applied to the same data. This analytical flexibility often undermines reproducibility and raises concerns about the robustness of neuroimaging studies. However, the array of software packages to investigate and address analytical flexibility is decentralized, scattered, and not well documented. Consequently, researchers often lack the necessary information and protocols to buttress the reliability of their findings across analytical tools. This review catalogs and describes software platforms (i.e., software or computational libraries) that can be used to address result variability arising from computational pipelines and environments and explores the use of computing platforms and neuroimaging pipeline frameworks in addressing this issue. This study offers guidance to the research community on accessing, understanding, and utilizing these platforms to address brain imaging analytical flexibility. Additionally, the article provides specific recommendations tailored to different user groups, considering the tools they intend to use with these platforms and their computational constraints.

摘要

脑成像研究人员可以使用大量的分析工具,其中许多工具执行相同或相似的任务,但应用于相同数据时会产生不同的结果。这种分析灵活性常常破坏可重复性,并引发对神经成像研究稳健性的担忧。然而,用于研究和解决分析灵活性的一系列软件包是分散的、零散的,且记录不完善。因此,研究人员往往缺乏必要的信息和方案来支撑其研究结果在各种分析工具间的可靠性。本综述编目并描述了可用于解决因计算流程和环境导致的结果变异性的软件平台(即软件或计算库),并探讨了计算平台和神经成像流程框架在解决这一问题中的应用。本研究为研究界提供了关于访问、理解和利用这些平台以解决脑成像分析灵活性的指导。此外,考虑到不同用户群体打算与这些平台一起使用的工具及其计算限制,本文还提供了针对不同用户群体的具体建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941f/12330840/1c54711aa220/IMAG.a.79_fig1.jpg

相似文献

1
Open-source platforms to investigate analytical flexibility in neuroimaging.
Imaging Neurosci (Camb). 2025 Jul 21;3. doi: 10.1162/IMAG.a.79. eCollection 2025.
5
GRAPEVNE - Graphical Analytical Pipeline Development Environment for Infectious Diseases.
Wellcome Open Res. 2025 May 27;10:279. doi: 10.12688/wellcomeopenres.23824.1. eCollection 2025.
7
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.
Autism Adulthood. 2024 Sep 16;6(3):362-373. doi: 10.1089/aut.2023.0032. eCollection 2024 Sep.
8
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.
10
Implementation of link workers in primary care: Synopsis of findings from a realist evaluation.
Health Soc Care Deliv Res. 2025 Jul;13(27):1-30. doi: 10.3310/KHGT9993.

本文引用的文献

1
Why experimental variation in neuroimaging should be embraced.
Nat Commun. 2024 Oct 31;15(1):9411. doi: 10.1038/s41467-024-53743-y.
2
DataLad: distributed system for joint management of code, data, and their relationship.
J Open Source Softw. 2021;6(63). doi: 10.21105/joss.03262. Epub 2021 Jul 1.
3
Reporting checklists in neuroimaging: promoting transparency, replicability, and reproducibility.
Neuropsychopharmacology. 2024 Nov;50(1):67-84. doi: 10.1038/s41386-024-01973-5. Epub 2024 Sep 6.
4
brainlife.io: a decentralized and open-source cloud platform to support neuroscience research.
Nat Methods. 2024 May;21(5):809-813. doi: 10.1038/s41592-024-02237-2. Epub 2024 Apr 11.
5
Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging.
Nat Methods. 2024 May;21(5):804-808. doi: 10.1038/s41592-023-02145-x. Epub 2024 Jan 8.
6
Enhancing collaborative neuroimaging research: introducing COINSTAC Vaults for federated analysis and reproducibility.
Front Neuroinform. 2023 Jun 19;17:1207721. doi: 10.3389/fninf.2023.1207721. eCollection 2023.
7
Data and Tools Integration in the Canadian Open Neuroscience Platform.
Sci Data. 2023 Apr 6;10(1):189. doi: 10.1038/s41597-023-01946-1.
8
Reproducibility in Neuroimaging Analysis: Challenges and Solutions.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Aug;8(8):780-788. doi: 10.1016/j.bpsc.2022.12.006. Epub 2022 Dec 19.
9
Open and reproducible neuroimaging: From study inception to publication.
Neuroimage. 2022 Nov;263:119623. doi: 10.1016/j.neuroimage.2022.119623. Epub 2022 Sep 12.
10
Reproducibility and replicability in neuroimaging data analysis.
Curr Opin Neurol. 2022 Aug 1;35(4):475-481. doi: 10.1097/WCO.0000000000001081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验