Suppr超能文献

神经影像学数据分析中的可重复性和可复制性。

Reproducibility and replicability in neuroimaging data analysis.

机构信息

Department of CSEE, University of Maryland, Baltimore County, Baltimore, Maryland.

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA.

出版信息

Curr Opin Neurol. 2022 Aug 1;35(4):475-481. doi: 10.1097/WCO.0000000000001081.

Abstract

PURPOSE OF REVIEW

Machine learning solutions are being increasingly used in the analysis of neuroimaging (NI) data, and as a result, there is an increase in the emphasis of the reproducibility and replicability of these data-driven solutions. Although this is a very positive trend, related terminology is often not properly defined, and more importantly, (computational) reproducibility that refers to obtaining consistent results using the same data and the same code is often disregarded.

RECENT FINDINGS

We review the findings of a recent paper on the topic along with other relevant literature, and present two examples that demonstrate the importance of accounting for reproducibility in widely used software for NI data.

SUMMARY

We note that reproducibility should be a first step in all NI data analyses including those focusing on replicability, and introduce available solutions for assessing reproducibility. We add the cautionary remark that when not taken into account, lack of reproducibility can significantly bias all subsequent analysis stages.

摘要

目的综述

机器学习解决方案越来越多地被应用于神经影像学(NI)数据的分析,因此,这些数据驱动解决方案的可重复性和可复制性受到了越来越多的重视。尽管这是一个非常积极的趋势,但相关术语通常没有得到正确定义,更重要的是,(计算)可重复性,即使用相同的数据和相同的代码获得一致的结果,往往被忽视。

最近的发现

我们回顾了一篇关于该主题的最新论文的发现以及其他相关文献,并提出了两个例子,说明了在广泛使用的 NI 数据软件中考虑可重复性的重要性。

总结

我们注意到,可重复性应该是包括关注可复制性的所有 NI 数据分析的第一步,并介绍了评估可重复性的可用解决方案。我们补充了一个警告,即如果不考虑可重复性,缺乏可重复性会严重影响所有后续的分析阶段。

相似文献

2
Reproducibility in Neuroimaging Analysis: Challenges and Solutions.神经影像学分析中的可重复性:挑战与解决方案。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023 Aug;8(8):780-788. doi: 10.1016/j.bpsc.2022.12.006. Epub 2022 Dec 19.
4
Reproducible Research: A Retrospective.可重现性研究:回顾。
Annu Rev Public Health. 2021 Apr 1;42:79-93. doi: 10.1146/annurev-publhealth-012420-105110. Epub 2021 Jan 19.

引用本文的文献

8
Intra-V1 functional networks and classification of observed stimuli.初级视皮层内的功能网络与观察到的刺激分类
Front Neuroinform. 2024 Mar 11;18:1080173. doi: 10.3389/fninf.2024.1080173. eCollection 2024.

本文引用的文献

6
Machine Learning in Medical Imaging.医学成像中的机器学习
IEEE Signal Process Mag. 2010 Jul;27(4):25-38. doi: 10.1109/MSP.2010.936730.
9
FreeSurfer.FreeSurfer。
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验