Suppr超能文献

体素级功能成像下的监督式脑节点与网络构建

Supervised brain node and network construction under voxel-level functional imaging.

作者信息

Xu Wanwan, Wang Selena, Gao Simiao, Tian Xinyuan, Tan Chichun, Shen Xilin, Luo Wenjing, Constable Todd, Li Tianxi, Zhao Yize

机构信息

Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, United States.

Department of Biostatistics, School of Public Health, Brown University, Providence, RI, United States.

出版信息

Imaging Neurosci (Camb). 2025 Jun 26;3. doi: 10.1162/IMAG.a.56. eCollection 2025.

Abstract

Recent advancements in understanding the brain's functional organization related to behavior have been pivotal, particularly in the development of predictive models based on brain connectivity. A major analytical strategy in this domain involves a two-step process by first constructing a connectivity matrix from predefined brain regions, and then linking these connections to behaviors or clinical outcomes. Although some advances considered subject-specific functionally homogeneous nodes without relying on predefined regions of interest (ROIs), all these approaches with unsupervised node partitions predict outcomes inefficiently with independently established connectivity. In this paper, we introduce the Supervised Brain Parcellation (SBP), a brain node parcellation scheme informed by the downstream predictive task. With voxel-level functional time courses generated under resting-state or cognitive tasks as input, our approach clusters voxels into nodes in a manner that maximizes the correlation between inter-node connections and the behavioral outcome, while also accommodating intra-node homogeneity. We rigorously evaluate the SBP approach using resting-state and task-based fMRI data from both the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP). Our analyses show that SBP significantly improves out-of-sample connectome-based predictive performance compared to conventional step-wise methods under various brain atlases. This advancement holds promise for enhancing our understanding of brain functional architectures with behavior and establishing more informative network neuromarkers for clinical applications.

摘要

近年来,在理解大脑与行为相关的功能组织方面取得的进展至关重要,特别是在基于脑连接性的预测模型的开发中。该领域的一种主要分析策略涉及一个两步过程,首先从预定义的脑区构建连接矩阵,然后将这些连接与行为或临床结果联系起来。尽管一些进展考虑了个体特异性的功能同质节点,而不依赖于预定义的感兴趣区域(ROI),但所有这些具有无监督节点划分的方法在独立建立连接性时预测结果的效率都很低。在本文中,我们介绍了监督脑图谱分割(SBP),这是一种由下游预测任务指导的脑节点图谱分割方案。以静息状态或认知任务下生成的体素级功能时间历程作为输入,我们的方法将体素聚类为节点,其方式是最大化节点间连接与行为结果之间的相关性,同时也兼顾节点内的同质性。我们使用来自青少年大脑认知发展(ABCD)研究和人类连接组计划(HCP)的静息态和基于任务的功能磁共振成像数据,对SBP方法进行了严格评估。我们的分析表明,与各种脑图谱下的传统逐步方法相比,SBP显著提高了基于样本外连接组的预测性能。这一进展有望增进我们对大脑功能结构与行为关系的理解,并为临床应用建立更具信息性的网络神经标记物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验