文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在 10 万多个静息态 fMRI 数据集识别规范且可复制的多尺度内在连通性网络。

Identifying canonical and replicable multi-scale intrinsic connectivity networks in 100k+ resting-state fMRI datasets.

机构信息

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Department of Computer Science, Georgia State University, Atlanta, Georgia, USA.

出版信息

Hum Brain Mapp. 2023 Dec 1;44(17):5729-5748. doi: 10.1002/hbm.26472. Epub 2023 Oct 3.


DOI:10.1002/hbm.26472
PMID:37787573
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10619392/
Abstract

Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.

摘要

尽管数据驱动方法具有已知的优势,但缺乏识别能够捕捉个体变异和个体间一致性的功能神经影像学模式的方法,限制了 rsfMRI 的临床应用及其在单个体分析中的应用。在这里,我们使用来自私人和公共数据集的超过 10 万个体的 rsfMRI 数据,通过使用多模型阶独立成分分析(ICA)来识别可复制的多空间尺度的内源性连通网络(ICN)模板。我们还研究了通过空间约束 ICA 来估计个体特异性 ICN 的可行性。结果表明,个体水平的 ICN 估计值随 ICN 本身、数据长度和空间分辨率的变化而变化。一般来说,大规模的 ICN 需要较少的数据就能达到与其模板在个体内和个体间的特定空间相似性水平。重要的是,增加数据长度可以降低 ICN 的个体特异性,这表明更长的扫描时间可能并不总是理想的。我们还发现数据长度和空间平滑度之间存在正线性关系(可能是由于对内在动力学进行平均),这表明研究优化数据长度时应考虑空间平滑度。最后,在不同数据长度下使用完整数据和子集估计的 ICN 之间的空间相似性的一致性表明,较短数据中的个体内空间相似性较低并非完全由 ICN 估计的可靠性较低所致,而是可能表明随着数据长度的增加而平均化的有意义的大脑动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/11ca08e9454a/HBM-44-5729-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/f544ad546a00/HBM-44-5729-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/ddee4b431727/HBM-44-5729-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/f9b926e03654/HBM-44-5729-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/7928156ccdf3/HBM-44-5729-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/17ec67d68911/HBM-44-5729-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/11ca08e9454a/HBM-44-5729-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/f544ad546a00/HBM-44-5729-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/ddee4b431727/HBM-44-5729-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/f9b926e03654/HBM-44-5729-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/7928156ccdf3/HBM-44-5729-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/17ec67d68911/HBM-44-5729-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/10619392/11ca08e9454a/HBM-44-5729-g001.jpg

相似文献

[1]
Identifying canonical and replicable multi-scale intrinsic connectivity networks in 100k+ resting-state fMRI datasets.

Hum Brain Mapp. 2023-12-1

[2]
Reliability and clinical utility of spatially constrained estimates of intrinsic functional networks from very short fMRI scans.

Hum Brain Mapp. 2023-4-15

[3]
Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study.

Neuroimage Clin. 2023

[4]
Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.

Neuroscience. 2013-12-19

[5]
Networks extracted from nonlinear fMRI connectivity exhibit unique spatial variation and enhanced sensitivity to differences between individuals with schizophrenia and controls.

bioRxiv. 2023-11-17

[6]
Whole-brain electrophysiological functional connectivity dynamics in resting-state EEG.

J Neural Eng. 2020-4-2

[7]
Pre-surgical features of intrinsic brain networks predict single and joint epilepsy surgery outcomes.

Neuroimage Clin. 2023

[8]
Multimodel Order Independent Component Analysis: A Data-Driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales.

Brain Connect. 2022-9

[9]
The presupplementary area within the language network: a resting state functional magnetic resonance imaging functional connectivity analysis.

Brain Connect. 2014-8

[10]
Generalized RAICAR: discover homogeneous subject (sub)groups by reproducibility of their intrinsic connectivity networks.

Neuroimage. 2012-7-9

引用本文的文献

[1]
A multi-modal approach for the treatment of non-fluent/agrammatic variant of Primary Progressive Aphasia.

Brain Commun. 2025-9-3

[2]
Supervised brain node and network construction under voxel-level functional imaging.

Imaging Neurosci (Camb). 2025-6-26

[3]
Functionally Adaptive Structural Basis Sets of the Brain: A Dynamic Fusion Approach.

Hum Brain Mapp. 2025-8-1

[4]
Aberrant Cortical-Subcortical-Cerebellar Connectivity in Resting-State fMRI as an Imaging Marker of Schizophrenia and Psychosis: A Systematic Review of Data-Driven Whole-Brain Functional Connectivity Analyses.

medRxiv. 2025-6-23

[5]
Toward Granular Brain Intrinsic Connectivity Networks and Insights into Schizophrenia.

bioRxiv. 2025-6-11

[6]
LINKING MULTI-SCALE BRAIN CONNECTIVITY WITH VIGILANCE, WORKING MEMORY, AND BEHAVIOR IN ADOLESCENTS.

bioRxiv. 2025-5-11

[7]
Study on Large-Scale Brain Network Abnormalities in Patients With Beta-Thalassemia.

Brain Behav. 2025-6

[8]
Brain State Convergence and Divergence as Resting State FMRI Biomarkers: A Large-Scale Study of Continuous, Overlapping, Time-resolved States Differentiates Four Psychiatric Disorders.

bioRxiv. 2025-5-22

[9]
Tell me why: A scoping review on the fundamental building blocks of fMRI-based network analysis.

Neuroimage Clin. 2025

[10]
Mapping the Psychosis Spectrum - Imaging Neurosubtypes from Multi-Scale Functional Network Connectivity.

bioRxiv. 2025-3-28

本文引用的文献

[1]
Reliability and clinical utility of spatially constrained estimates of intrinsic functional networks from very short fMRI scans.

Hum Brain Mapp. 2023-4-15

[2]
Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia.

Netw Neurosci. 2022-6-1

[3]
SMART (splitting-merging assisted reliable) Independent Component Analysis for Brain Functional Networks.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[4]
When makes you unique: Temporality of the human brain fingerprint.

Sci Adv. 2021-10-15

[5]
Multimodel Order Independent Component Analysis: A Data-Driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales.

Brain Connect. 2022-9

[6]
Within node connectivity changes, not simply edge changes, influence graph theory measures in functional connectivity studies of the brain.

Neuroimage. 2021-10-15

[7]
Tracking spatial dynamics of functional connectivity during a task.

Neuroimage. 2021-10-1

[8]
Unraveling reproducible dynamic states of individual brain functional parcellation.

Netw Neurosci. 2021-2-1

[9]
Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics.

Hum Brain Mapp. 2021-4-1

[10]
Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks using Big Data Population Priors.

J Am Stat Assoc. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索