Ozenne Brice, Nørgaard Martin, Pernet Cyril, Ganz Melanie
Neurobiology Research Unit, Rigshospitalet Blegdamsvej, Copenhagen, Denmark.
Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark.
Imaging Neurosci (Camb). 2025 Apr 28;3. doi: 10.1162/imag_a_00523. eCollection 2025.
Being able to aggregate results from many acceptable data analysis pipelines (multiverse analyses) is a desirable feature in almost all aspects of imaging neuroscience. This is because multiple noise sources may contaminate the acquired imaging data, and different pipelines will attenuate or remove those noise source effects differentially. Here, we used multiple preprocessing pipelines that are known to impact the final results and conclusions of Positron Emission Tomography (PET) neuroimaging studies significantly. We developed conceptual and practical tools for statistical analyses that aggregate pipeline results and a new sensitivity analysis testing for hypotheses across pipelines, such as "no effect across all pipelines" or "at least one pipeline with no effect". The proposed framework is generic and can be applied to any multiverse scenario. Code to reproduce all analyses and figures is openly available, including a step-by-step tutorial, so other researchers can carry out their own multiverse analysis.
能够汇总来自许多可接受的数据分析流程(多宇宙分析)的结果,这在成像神经科学的几乎所有方面都是一个理想的特性。这是因为多个噪声源可能会污染采集到的成像数据,并且不同的流程会以不同方式减弱或消除那些噪声源的影响。在这里,我们使用了多个已知会显著影响正电子发射断层扫描(PET)神经成像研究最终结果和结论的预处理流程。我们开发了用于汇总流程结果的统计分析的概念性和实用性工具,以及一种针对跨流程假设的新敏感性分析测试,例如“所有流程均无效应”或“至少有一个流程无效应”。所提出的框架具有通用性,可应用于任何多宇宙场景。用于重现所有分析和图表的代码是公开可用的,包括一个逐步教程,以便其他研究人员能够进行他们自己的多宇宙分析。