Suppr超能文献

由多个团队对单个神经影像学数据集进行分析的可变性。

Variability in the analysis of a single neuroimaging dataset by many teams.

机构信息

Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

出版信息

Nature. 2020 Jun;582(7810):84-88. doi: 10.1038/s41586-020-2314-9. Epub 2020 May 20.

Abstract

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.

摘要

在许多科学领域,数据分析工作流程变得越来越复杂和灵活。在这里,我们通过要求 70 个独立团队分析相同的数据集来评估这种灵活性对功能磁共振成像结果的影响,同时测试相同的 9 个事前假设。分析方法的灵活性体现在这样一个事实上,没有两个团队选择相同的工作流程来分析数据。这种灵活性导致假设检验的结果存在很大差异,即使对于那些在分析管道的中间阶段统计图谱高度相关的团队也是如此。报告结果的差异与分析方法的几个方面有关。值得注意的是,一种跨团队汇总信息的元分析方法在激活区域产生了显著的共识。此外,该领域研究人员的预测市场显示,即使是对数据集有直接了解的研究人员,也高估了发现显著结果的可能性。我们的研究结果表明,分析灵活性可能对科学结论产生重大影响,并确定了可能与功能磁共振成像分析中的变异性有关的因素。结果强调了验证和共享复杂分析工作流程的重要性,并证明了对相同数据进行多次分析和报告的必要性。讨论了可能用于减轻与分析可变性相关问题的潜在方法。

相似文献

1
Variability in the analysis of a single neuroimaging dataset by many teams.
Nature. 2020 Jun;582(7810):84-88. doi: 10.1038/s41586-020-2314-9. Epub 2020 May 20.
2
Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2203150119. doi: 10.1073/pnas.2203150119. Epub 2022 Oct 28.
3
Exploring the impact of analysis software on task fMRI results.
Hum Brain Mapp. 2019 Aug 1;40(11):3362-3384. doi: 10.1002/hbm.24603. Epub 2019 May 2.
5
Isolating the sources of pipeline-variability in group-level task-fMRI results.
Hum Brain Mapp. 2022 Feb 15;43(3):1112-1128. doi: 10.1002/hbm.25713. Epub 2021 Nov 13.
6
To pool or not to pool: Can we ignore cross-trial variability in FMRI?
Neuroimage. 2021 Jan 15;225:117496. doi: 10.1016/j.neuroimage.2020.117496. Epub 2020 Oct 24.
7
BrainStat: A toolbox for brain-wide statistics and multimodal feature associations.
Neuroimage. 2023 Feb 1;266:119807. doi: 10.1016/j.neuroimage.2022.119807. Epub 2022 Dec 10.
8
A Comprehensive Framework to Capture the Arcana of Neuroimaging Analysis.
Neuroinformatics. 2020 Jan;18(1):109-129. doi: 10.1007/s12021-019-09430-1.
9
fMRI data of mixed gambles from the Neuroimaging Analysis Replication and Prediction Study.
Sci Data. 2019 Jul 1;6(1):106. doi: 10.1038/s41597-019-0113-7.
10
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
A scoping review on metrics to quantify reproducibility: a multitude of questions leads to a multitude of metrics.
R Soc Open Sci. 2025 Jul 15;12(7):242076. doi: 10.1098/rsos.242076. eCollection 2025 Jul.
2
Baby Open Brains: An open-source dataset of infant brain segmentations.
Sci Data. 2025 Aug 14;12(1):1423. doi: 10.1038/s41597-025-05404-y.
3
A robust approach for analyzing and mapping hierarchical brain connectome towards laminar-specific neural networks.
Imaging Neurosci (Camb). 2025 Apr 22;3. doi: 10.1162/imag_a_00543. eCollection 2025.
4
Statistical inference for same data meta-analysis in neuroimaging multiverse analyzes.
Imaging Neurosci (Camb). 2025 Mar 31;3. doi: 10.1162/imag_a_00513. eCollection 2025.
5
A sensitivity analysis of preprocessing pipelines: Toward a solution for multiverse analyses.
Imaging Neurosci (Camb). 2025 Apr 28;3. doi: 10.1162/imag_a_00523. eCollection 2025.
6
Open-source platforms to investigate analytical flexibility in neuroimaging.
Imaging Neurosci (Camb). 2025 Jul 21;3. doi: 10.1162/IMAG.a.79. eCollection 2025.
7
Challenging the status quo: A guide to open and reproducible neuroimaging for early career researchers.
Imaging Neurosci (Camb). 2025 Jun 24;3. doi: 10.1162/IMAG.a.21. eCollection 2025.
8
Challenges in measuring individual differences of brain function.
Imaging Neurosci (Camb). 2025 Jan 7;3. doi: 10.1162/imag_a_00430. eCollection 2025.
9
On the validity of fMRI mega-analyses using data processed with different pipelines.
Imaging Neurosci (Camb). 2025 Apr 28;3. doi: 10.1162/imag_a_00522. eCollection 2025.
10
The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing.
Imaging Neurosci (Camb). 2024 Apr 18;2. doi: 10.1162/imag_a_00137. eCollection 2024.

本文引用的文献

1
Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015.
Nat Hum Behav. 2018 Sep;2(9):637-644. doi: 10.1038/s41562-018-0399-z. Epub 2018 Aug 27.
2
fMRI data of mixed gambles from the Neuroimaging Analysis Replication and Prediction Study.
Sci Data. 2019 Jul 1;6(1):106. doi: 10.1038/s41597-019-0113-7.
3
fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat Methods. 2019 Jan;16(1):111-116. doi: 10.1038/s41592-018-0235-4. Epub 2018 Dec 10.
4
The preregistration revolution.
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2600-2606. doi: 10.1073/pnas.1708274114.
5
Assessing Model Selection Uncertainty Using a Bootstrap Approach: An update.
Struct Equ Modeling. 2017;24(2):230-245. doi: 10.1080/10705511.2016.1252265. Epub 2016 Dec 5.
6
Best practices in data analysis and sharing in neuroimaging using MRI.
Nat Neurosci. 2017 Feb 23;20(3):299-303. doi: 10.1038/nn.4500.
8
Degrees of Freedom in Planning, Running, Analyzing, and Reporting Psychological Studies: A Checklist to Avoid -Hacking.
Front Psychol. 2016 Nov 25;7:1832. doi: 10.3389/fpsyg.2016.01832. eCollection 2016.
9
Increasing Transparency Through a Multiverse Analysis.
Perspect Psychol Sci. 2016 Sep;11(5):702-712. doi: 10.1177/1745691616658637.
10
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5. doi: 10.1073/pnas.1602413113. Epub 2016 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验