Suppr超能文献

通过几何本征模式的随机旋转生成保留空间自相关的替代脑图谱。

Generation of surrogate brain maps preserving spatial autocorrelation through random rotation of geometric eigenmodes.

作者信息

Koussis Nikitas C, Pang James C, Phogat Richa, Jeganathan Jayson, Paton Bryan, Fornito Alex, Robinson P A, Misic Bratislav, Breakspear Michael

机构信息

Neuromodulation Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.

Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.

出版信息

Imaging Neurosci (Camb). 2025 Jul 16;3. doi: 10.1162/IMAG.a.71. eCollection 2025.

Abstract

The brain expresses activity in complex spatiotemporal patterns, reflecting the influence of spatially distributed cytoarchitectural, biochemical, and genetic properties. The correspondence between these different "brain maps" is a topic of substantial interest. However, these maps possess intrinsic smoothness (spatial autocorrelation, SA) which can inflate spurious cross-correlations, leading to false positive associations. Identifying true associations requires knowledge about the distribution of correlations that arise by chance in the presence of SA. This null distribution can be generated from an ensemble of surrogate brain maps that preserve the intrinsic SA but break the correlations between maps. The present work introduces the "eigenstrapping" method, which performs a spectral decomposition of brain maps, such as fMRI activation patterns, expressed on cortical and subcortical surfaces, using geometric eigenmodes, and then randomly rotating these modes to produce SA-preserving surrogate brain maps. It is shown that these surrogates appropriately represent the null distribution of chance pairwise correlations, with expected false positive control superior to current state-of-the-art procedures. Eigenstrapping is fast, eschews the need for parametric assumptions about the nature of a map's SA, and works with maps defined on smooth surfaces with a boundary, such as a single cortical hemisphere when the medial wall has been removed. Moreover, eigenstrapping generalizes to broader classes of null models than existing techniques, offering a unified approach for inference on cortical and subcortical maps, spatiotemporal processes, and complex patterns possessing higher-order correlations.

摘要

大脑以复杂的时空模式表达活动,反映了空间分布的细胞结构、生化和遗传特性的影响。这些不同的“脑图谱”之间的对应关系是一个备受关注的话题。然而,这些图谱具有内在的平滑性(空间自相关,SA),这可能会夸大虚假的交叉相关性,导致假阳性关联。识别真实的关联需要了解在存在SA的情况下偶然出现的相关性分布。这种零分布可以从一组替代脑图谱中生成,这些图谱保留了内在的SA,但打破了图谱之间的相关性。目前的工作介绍了“特征引导”方法,该方法使用几何特征模式对在皮质和皮质下表面表达的脑图谱(如功能磁共振成像激活模式)进行谱分解,然后随机旋转这些模式以生成保留SA的替代脑图谱。结果表明,这些替代图谱适当地代表了偶然成对相关性的零分布,预期的假阳性控制优于当前的先进程序。特征引导速度快,无需对图谱SA的性质进行参数假设,并且适用于在具有边界的光滑表面上定义的图谱,例如去除内侧壁后的单个皮质半球。此外,与现有技术相比,特征引导可以推广到更广泛的零模型类别,为皮质和皮质下图谱、时空过程以及具有高阶相关性的复杂模式的推断提供了一种统一方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e99/12330862/b4e57859d719/IMAG.a.71_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验