Feng Wanchang, Li Boman, Yuan Guoqiang, Li Yawei, Zhang Yanfei, Du Meng, Su Yichun, Tang Yijian, Yue Haotian, Li Yuxin, Shakouri Mohsen, Chen Hsiao-Chien, Li Wenting, Liu Zheng, Pang Huan
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
School of Chemistry and Chemical Engineering, Chongqing University of Science & Technology, Chongqing, 401331, P. R. China.
Adv Sci (Weinh). 2025 Aug 13:e11274. doi: 10.1002/advs.202511274.
The practical application of aqueous aluminumion batteries (AAlBs) faced with critical challenges, such as low rate performance and poor cycling stability due to the absence of ideal cathode materials. To address the bottlenecks of low electrochemical activity, structural instability, and narrow voltage window in Prussian blue analogues (PBAs) for AAIBs, this study develops a universal synthesis strategy integrating acid-assisted method with ligand modulation to prepare high-performance vanadium-based PBAs (V-PBAs) cathodes. Through precise coordination environment control, V and Fe/Co/Ni synergistically enhance multi-electron redox activity. Density functional theory calculations reveal that the Fe-doped VFePBA exhibits a narrow bandgap (0.479 eV) and low Al migration energy barrier (0.586 eV), enabling rapid ion transport. Combined with an Al(SO)-urea eutectic electrolyte (AU15) that expands the operational voltage window to 0.1-2.0 V, the optimized Zn||AU15||VFePBA system achieves a high specific capacity of 161.37 mAh g at 0.1 A g. In-situ characterizations confirm a suppressed structural distortion via Al-O coordination and a capacitive-dominated charge storage mechanism. Flexible pouch cells demonstrate stable operation under mechanical bending and practical device powering capabilities. This work provides a novel paradigm for the systematic assembly of advanced safe, and low-cost post-lithium energy storage systems.
水系铝离子电池(AAlBs)的实际应用面临着严峻挑战,例如由于缺乏理想的阴极材料而导致倍率性能低和循环稳定性差。为了解决用于水系铝离子电池的普鲁士蓝类似物(PBAs)中存在的低电化学活性、结构不稳定性和窄电压窗口等瓶颈问题,本研究开发了一种将酸辅助法与配体调制相结合的通用合成策略,以制备高性能的钒基PBAs(V-PBAs)阴极。通过精确控制配位环境,钒与铁/钴/镍协同增强多电子氧化还原活性。密度泛函理论计算表明,铁掺杂的VFePBA具有窄带隙(0.479 eV)和低铝迁移能垒(0.586 eV),能够实现快速离子传输。结合将工作电压窗口扩展到0.1-2.0 V的Al(SO)-尿素共晶电解质(AU15),优化后的Zn||AU15||VFePBA体系在0.1 A g下实现了161.37 mAh g的高比容量。原位表征证实了通过Al-O配位抑制了结构畸变以及电容主导的电荷存储机制。柔性软包电池在机械弯曲下展示出稳定运行以及实际的器件供电能力。这项工作为先进、安全且低成本的后锂能源存储系统的系统组装提供了一种新的范例。