Suppr超能文献

用于在全水分解中实现高效双功能电催化剂的非晶态FeNi(OH)和晶态NiS异质结催化剂的界面工程构建。

Interface-Engineered Construction of Amorphous FeNi(OH) and Crystalline NiS Heterojunction Catalysts for Achieving Efficient Bifunctional Electrocatalysts in Overall Water Splitting.

作者信息

Wang Yue, Qin Han, Wang Xiangming, Yan Feng, Zhao Yang, Yu Xianbo

机构信息

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.

Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

出版信息

ChemSusChem. 2025 Aug 13:e2501240. doi: 10.1002/cssc.202501240.

Abstract

The advancement of inexpensive and productive bifunctional electrocatalysts for overall water splitting is essential for achieving hydrogen energy production. Herein, a hierarchical heterostructure catalyst composed of amorphous FeNi(OH) nanosheets supported on a crystalline NiS scaffold, which is anchored to nickel foam through a combined hydrothermal-electrodeposition strategy, is reported. The crystalline NiS framework exhibits metal-like electrical conductivity and optimized hydrogen adsorption kinetics, while the amorphous FeNi(OH) overlayer offers abundant adaptive active sites that enhance oxygen evolution reaction (OER) activity. The interfacial charge redistribution decreases the activation energy required for water splitting and accelerates the proton-coupled electron transfer process. Electrochemical tests demonstrate that the catalyst achieves performance at a current density of 10 mA cm, with hydrogen evolution reaction (HER) and OER overpotentials as low as 78 and 183 mV, respectively. In addition, an alkaline electrolyzer assembled with this catalyst serving as both cathode and anode can sustain a current density of 10 mA cm with only 1.51 V and keep a long-term stability exceeding 100 h, surpassing the performance of commercial Pt/C||IrO systems. This study provides a design paradigm that integrates conductive crystalline frameworks with amorphous layers, addressing the tradeoff between conductivity and catalytic multifunctionality in nonprecious metal electrocatalysts.

摘要

开发用于全水分裂的廉价且高效的双功能电催化剂对于实现氢能生产至关重要。在此,报道了一种分级异质结构催化剂,它由负载在结晶NiS支架上的非晶态FeNi(OH)纳米片组成,该支架通过水热-电沉积联合策略锚定在泡沫镍上。结晶NiS框架具有类似金属的导电性和优化的氢吸附动力学,而非晶态FeNi(OH)覆盖层提供了丰富的适应性活性位点,增强了析氧反应(OER)活性。界面电荷重新分布降低了水分解所需的活化能,并加速了质子耦合电子转移过程。电化学测试表明,该催化剂在10 mA cm的电流密度下实现了性能,析氢反应(HER)和OER过电位分别低至78和183 mV。此外,以该催化剂作为阴极和阳极组装的碱性电解槽在仅1.51 V的电压下可维持10 mA cm的电流密度,并保持超过100 h的长期稳定性,超过了商业Pt/C||IrO系统的性能。这项研究提供了一种将导电结晶框架与非晶层相结合的设计范例,解决了非贵金属电催化剂中导电性和催化多功能性之间的权衡问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验