Suppr超能文献

一种用于食管癌容积调强放疗计划剂量预测的新型家庭模型。

A novel family model for dose prediction in esophageal cancer VMAT planning.

作者信息

Sun Hongfei, Liu Yufen, Huang Wei, Wang Qifeng, Li Jie, Meng Fan, Zhu Jiarui, Wang Zhongfei, Sun Xiaohuan, Gong Jie, Ren Ge, Cai Jing, Zhao Lina

机构信息

Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.

出版信息

Med Phys. 2025 Aug;52(8):e18059. doi: 10.1002/mp.18059.

Abstract

BACKGROUND

The tumor distribution in esophageal cancer exhibits high heterogeneity, making the design of corresponding volumetric modulated arc therapy (VMAT) plans challenging and time-consuming for medical physicists.

PURPOSE

This study proposes a new family model driven by multi-medical physics prior knowledge to provide clinically acceptable VMAT dose references for esophageal cancer.

METHODS

This study used a training set of 505 esophageal cancer patients and 40 cases of esophageal cancer data from three centers as the testing set. Another 43 cases were used for ablation experiments and prospective evaluation. The anatomical and dosimetric prior knowledge are incorporated as constraints to guide the model in individualized predictions of VMAT dose distributions for esophageal cancer. The new family model comprises three generations of networks. First, a basic model analyzes the deep features within the dose prior knowledge, saving the parameters obtained from feature learning. These parameters, combined with anatomical prior knowledge, are then passed to the second-generation model, which serves as a pedagogical model to establish mapping relationships between anatomical and dosimetric prior knowledge. Finally, the dosimetric related parameters are removed, and a third-generation learning model independently explores potential effective features within the anatomical prior knowledge to generate the predicted VMAT dose distribution.

RESULTS

The absolute dose differences between the predicted and ground truth spatial dose distributions within the planning target volume (PTV) were quantified using D98%, D2%, and Dmean. Compared to state-of-the-art (SOTA) models, the new model demonstrated lower values of 49.01 cGy ± 17.93 cGy, 13.94 cGy ± 4.62 cGy, and 9.84 cGy ± 5.51 cGy for D98%, D2%, and Dmean, respectively. In terms of dosimetric evaluation for organs at risk (OARs), it also performed better than other SOTA models. Prospective evaluations revealed that the new model enables medical physicists to save at least 35.3% of their planning time compared to conventional workflows.

CONCLUSIONS

The novel artificial intelligence approach holds promise in providing medical physicists with valuable guidance for VMAT planning optimization.

摘要

背景

食管癌中的肿瘤分布具有高度异质性,这使得医学物理师设计相应的容积调强弧形放疗(VMAT)计划具有挑战性且耗时。

目的

本研究提出一种由多医学物理先验知识驱动的新家族模型,为食管癌提供临床可接受的VMAT剂量参考。

方法

本研究使用了505例食管癌患者的训练集以及来自三个中心的40例食管癌数据作为测试集。另外43例用于消融实验和前瞻性评估。将解剖学和剂量学先验知识作为约束条件,以指导模型对食管癌VMAT剂量分布进行个体化预测。新家族模型由三代网络组成。首先,一个基础模型分析剂量先验知识中的深度特征,保存从特征学习中获得的参数。然后,这些参数与解剖学先验知识相结合,传递给第二代模型,该模型作为教学模型,用于建立解剖学和剂量学先验知识之间的映射关系。最后,去除剂量学相关参数,第三代学习模型在解剖学先验知识中独立探索潜在的有效特征,以生成预测的VMAT剂量分布。

结果

使用D98%、D2%和Dmean对计划靶区(PTV)内预测的和真实的空间剂量分布之间的绝对剂量差异进行量化。与最先进(SOTA)模型相比,新模型在D98%、D2%和Dmean方面分别表现出更低的值,分别为49.01 cGy±17.93 cGy、13.94 cGy±4.62 cGy和9.84 cGy±5.51 cGy。在危及器官(OARs)的剂量学评估方面,它也比其他SOTA模型表现更好。前瞻性评估表明,与传统工作流程相比,新模型使医学物理师能够节省至少35.3%的计划时间。

结论

这种新颖的人工智能方法有望为医学物理师进行VMAT计划优化提供有价值的指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验