Vivek Nithika, Ramesh Karthik
Del Norte High School, 16601 Nighthawk Ln, San Diego, CA, 92127, United States, 1 619 458 5059.
Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
JMIR AI. 2025 Aug 13;4:e66561. doi: 10.2196/66561.
The visual similarity of melanoma and seborrheic keratosis has made it difficult for older patients with disabilities to know when to seek medical attention, contributing to the metastasis of melanoma.
This study aimed to present a novel multimodal deep learning-based technique to distinguish between melanoma and seborrheic keratosis.
Our strategy is three-fold: (1) use patient image data to train and test three deep learning models using transfer learning (ResNet50, InceptionV3, and VGG16) and one author-designed model, (2) use patient metadata to train and test a deep learning model, and (3) combine the predictions of the image model with the best accuracy and the metadata model, using nonlinear least squares regression to specify ideal weights to each model for a combined prediction.
The accuracy of the combined model was 88% (195/221 classified correctly) on test data from the HAM10000 dataset. Model reliability was assessed by visualizing the output activation map of each model and comparing the diagnosis patterns to that of dermatologists. The addition of metadata to the image dataset was key to reducing the false-negative and false-positive rates simultaneously, thereby producing better metrics and improving overall model accuracy.
Results from this experiment could be used to eliminate late diagnosis of melanoma via easy access to an app. Future experiments can use text data (subjective data pertaining to how the patient felt over a certain period of time) to allow this model to reflect the real hospital setting to a greater extent.
黑色素瘤和脂溢性角化病在视觉上的相似性,使得老年残疾患者难以知晓何时应寻求医疗关注,这导致了黑色素瘤的转移。
本研究旨在提出一种基于多模态深度学习的新技术,以区分黑色素瘤和脂溢性角化病。
我们的策略包括三个方面:(1)使用患者图像数据,通过迁移学习(ResNet50、InceptionV3和VGG16)训练和测试三个深度学习模型以及一个作者设计的模型;(2)使用患者元数据训练和测试一个深度学习模型;(3)将准确率最高的图像模型和元数据模型的预测结果相结合,使用非线性最小二乘法回归为每个模型指定理想权重,以进行联合预测。
在来自HAM10000数据集的测试数据上,联合模型的准确率为88%(221例中195例分类正确)。通过可视化每个模型的输出激活图,并将诊断模式与皮肤科医生的诊断模式进行比较,评估了模型的可靠性。在图像数据集中添加元数据是同时降低假阴性和假阳性率的关键,从而产生更好的指标并提高整体模型准确率。
本实验结果可用于通过方便地访问应用程序来消除黑色素瘤的晚期诊断。未来的实验可以使用文本数据(与患者在一段时间内的感受相关的主观数据),以使该模型在更大程度上反映真实的医院环境。