Suppr超能文献

临床医生对患者可信度评估中的种族偏见:来自电子健康记录的证据。

Racial bias in clinician assessment of patient credibility: Evidence from electronic health records.

作者信息

Beach Mary Catherine, Harrigian Keith, Chee Brant, Ahmad Alya, Links Anne R, Zirikly Ayah, Han Dingfen, Boss Emily, Lawson Shari, Saheed Mustapha, Li Yahan, Dredze Mark, Saha Somnath

机构信息

Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America.

Center for Health Equity, Johns Hopkins University, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2025 Aug 13;20(8):e0328134. doi: 10.1371/journal.pone.0328134. eCollection 2025.

Abstract

OBJECTIVE

Black patients disproportionately report feeling disbelieved or having concerns dismissed in medical encounters, suggesting potential racial bias in clinicians' assessment of patient credibility. Because this bias may be evident in the language used by clinicians when writing notes about patients, we sought to assess racial differences in use of language either undermining or supporting patient credibility within the electronic health record (EHR).

METHODS

We analyzed 13,065,081 notes written between 2016-2023 about 1,537,587 patients by 12,027 clinicians at a large health system with 5 hospitals and an extensive network of ambulatory practices in the mid-Atlantic region of the United States. We developed and applied natural language processing models to identify whether or not a note contained terms undermining or supporting patient credibility, and used logistic regression with generalized estimating equations to estimate the association of credibility language with patient race/ethnicity.

RESULTS

The mean patient age was 43.3 years and 55.9% were female; 57.6% were non-Hispanic White, 28.0% non-Hispanic Black, 8.3% Hispanic/Latino, and 6.1% Asian. Clinician-authors were attending physicians (44.9%), physicians-in-training (40.1%) and advanced practice providers (15.0%). Terms specifically related to patient credibility were relatively uncommon, with 106,523 (0.82%) notes containing terms undermining patient credibility, and 33,706 (0.26%) supporting credibility. In adjusted analyses, notes written about non-Hispanic Black vs. White patients had higher odds of containing terms undermining credibility (aOR 1.29, 95% CI 1.27-1.32), and lower odds of supporting credibility (aOR 0.82; 95% CI 0.79-0.85). Notes written about Hispanic/Latino vs. White patients had similar odds of language undermining (aOR 0.99, 95% CI 0.95-1.03) and supporting credibility (aOR 0.95, 95% CI 0.89-1.02). Notes written about Asian vs. White patients had lower odds of language undermining credibility (aOR 0.85, 95% CI 0.81-0.89), and higher odds of supporting credibility (aOR 1.30, 95% CI 1.23-1.38).

CONCLUSIONS

Clinician documentation undermining patient credibility may disproportionately stigmatize Black individuals and favor Asian individuals. As stigmatizing language in medical records has been shown to negatively influence clinician attitudes and decision making, these racial differences in documentation may influence patient care and outcomes and exacerbate health inequities.

摘要

目的

黑人患者不成比例地报告称,在医疗过程中感到不被信任或担忧被忽视,这表明临床医生在评估患者可信度时可能存在潜在的种族偏见。由于这种偏见可能在临床医生撰写患者记录时使用的语言中很明显,我们试图评估电子健康记录(EHR)中使用的语言在削弱或支持患者可信度方面的种族差异。

方法

我们分析了美国大西洋中部地区一个拥有5家医院和广泛门诊网络的大型医疗系统中12,027名临床医生在2016年至2023年期间为1,537,587名患者撰写的13,065,081份记录。我们开发并应用自然语言处理模型来识别一份记录是否包含削弱或支持患者可信度的术语,并使用带有广义估计方程的逻辑回归来估计可信度语言与患者种族/族裔的关联。

结果

患者的平均年龄为43.3岁,55.9%为女性;57.6%为非西班牙裔白人,28.0%为非西班牙裔黑人,8.3%为西班牙裔/拉丁裔,6.1%为亚洲人。临床记录作者为主治医师(44.9%)、实习医生(40.1%)和高级执业提供者(15.0%)。与患者可信度具体相关的术语相对较少见,106,523份(0.82%)记录包含削弱患者可信度的术语,33,706份(0.26%)记录支持可信度。在调整分析中,关于非西班牙裔黑人与白人患者的记录包含削弱可信度术语的几率更高(调整后比值比[aOR]为1.29,95%置信区间[CI]为1.27 - 1.32),支持可信度的几率更低(aOR为0.82;95% CI为0.79 - 0.85)。关于西班牙裔/拉丁裔与白人患者的记录在语言削弱(aOR为0.99,95% CI为0.95 - 1.03)和支持可信度方面的几率相似(aOR为0.95,95% CI为0.89 - 1.02)。关于亚洲与白人患者的记录包含削弱可信度语言的几率更低(aOR为0.85,95% CI为0.81 - 0.89),支持可信度的几率更高(aOR为1.30,95% CI为1.23 - 1.38)。

结论

临床医生记录中削弱患者可信度的内容可能会不成比例地给黑人个体带来污名化,而对亚洲个体有利。由于病历中的污名化语言已被证明会对临床医生的态度和决策产生负面影响,这些记录中的种族差异可能会影响患者护理和治疗结果,并加剧健康不平等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/762b/12349006/28638f17847c/pone.0328134.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验