Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
Commun Biol. 2024 Jan 20;7(1):115. doi: 10.1038/s42003-024-05788-4.
A critical requirement for studying cell mechanics is three-dimensional assessment of cellular shapes and forces with high spatiotemporal resolution. Traction force microscopy with fluorescence imaging enables the measurement of cellular forces, but it is limited by photobleaching and a slow acquisition speed. Here, we present refractive-index traction force microscopy (RI-TFM), which simultaneously quantifies the volumetric morphology and traction force of cells using a high-speed illumination scheme with 0.5-Hz temporal resolution. Without labelling, our method enables quantitative analyses of dry-mass distributions and shear (in-plane) and normal (out-of-plane) tractions of single cells on the extracellular matrix. When combined with a constrained total variation-based deconvolution algorithm, it provides 0.55-Pa shear and 1.59-Pa normal traction sensitivity for a 1-kPa hydrogel substrate. We demonstrate its utility by assessing the effects of compromised intracellular stress and capturing the rapid dynamics of cellular junction formation in the spatiotemporal changes in non-planar traction components.
研究细胞力学的一个关键要求是能够以高时空分辨率对细胞形状和力进行三维评估。荧光成像的牵引力显微镜能够测量细胞力,但受到光漂白和较慢采集速度的限制。在这里,我们提出了折射率牵引力显微镜(RI-TFM),它使用高速照明方案以 0.5-Hz 的时间分辨率同时定量测量细胞的体积形态和牵引力。无需标记,我们的方法能够对细胞在细胞外基质上的干物质分布以及剪切(平面内)和法向(平面外)牵引力进行定量分析。当与基于约束全变差的反卷积算法结合使用时,它可以为 1-kPa 的水凝胶基底提供 0.55-Pa 的剪切和 1.59-Pa 的法向牵引力灵敏度。我们通过评估细胞内应激受损的影响并捕获细胞连接形成的快速动力学,展示了该方法在非平面牵引力分量的时空变化中的应用。