Schmidt Jan Hendrik, Herlo Rasmus, Rombach Joscha, Larsen Andreas Haahr, Stoklund Mikkel, Perslev Mathias, Nielsen Tommas Theiss Ehler, Andersen Keenie Ayla, Herenbrink Carmen Klein, Lycas Matthew D, Ejdrup Aske Lykke, Christensen Nikolaj Riis, Christensen Jan P, Salman Mootaz, Herborg Freja, Gether Ulrik, Hauser Alexander Sebastian, Bassereau Patricia, Perrais David, Madsen Kenneth Lindegaard
Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
Sci Adv. 2025 Aug 15;11(33):eadv1499. doi: 10.1126/sciadv.adv1499. Epub 2025 Aug 13.
Cellular signaling relies on the activity of transmembrane receptors and their presentation on the cellular surface. Their continuous insertion in the plasma membrane is balanced by constitutive and activity-dependent internalization, which is orchestrated by adaptor proteins recognizing semispecific motifs within the receptors' intracellular regions. Here, we describe a complementary trafficking mechanism for G protein-coupled receptors (GPCRs) that is evolutionary conserved and refined. This mechanism relies on the insertion of their amphipathic helix 8 into the inner leaflet of lipid membranes, orthogonal to the transmembrane helices. These amphipathic helices dictate subcellular localization of the receptors and autonomously drive their endocytosis by cooperative assembly and association with areas of high membrane curvature. The strength of helix 8 membrane insertion propensity quantitatively predicts the rate of constitutive internalization of GPCRs. This discovery advances our understanding of membrane protein trafficking and highlights a principle of receptor-lipid interactions that may have broad implications for cellular signaling and therapeutic targeting.
细胞信号传导依赖于跨膜受体的活性及其在细胞表面的呈现。它们在质膜中的持续插入与组成型和活性依赖性内化保持平衡,内化过程由衔接蛋白协调,这些衔接蛋白识别受体细胞内区域的半特异性基序。在这里,我们描述了一种G蛋白偶联受体(GPCRs)的互补运输机制,该机制在进化上是保守和精细的。这种机制依赖于其两亲性螺旋8插入脂膜的内小叶,与跨膜螺旋正交。这些两亲性螺旋决定了受体的亚细胞定位,并通过协同组装以及与高膜曲率区域的结合自主驱动其内化。螺旋8膜插入倾向的强度定量地预测了GPCRs组成型内化的速率。这一发现推进了我们对膜蛋白运输的理解,并突出了受体 - 脂质相互作用的一个原则,这可能对细胞信号传导和治疗靶点具有广泛的影响。