Suppr超能文献

用于物理储层计算的界面型可调氧离子动力学

Interface-type tunable oxygen ion dynamics for physical reservoir computing.

作者信息

Liu Zhuohui, Zhang Qinghua, Xie Donggang, Zhang Mingzhen, Li Xinyan, Zhong Hai, Li Ge, He Meng, Shang Dashan, Wang Can, Gu Lin, Yang Guozhen, Jin Kuijuan, Ge Chen

机构信息

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.

College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 100049, Beijing, China.

出版信息

Nat Commun. 2023 Nov 7;14(1):7176. doi: 10.1038/s41467-023-42993-x.

Abstract

Reservoir computing can more efficiently be used to solve time-dependent tasks than conventional feedforward network owing to various advantages, such as easy training and low hardware overhead. Physical reservoirs that contain intrinsic nonlinear dynamic processes could serve as next-generation dynamic computing systems. High-efficiency reservoir systems require nonlinear and dynamic responses to distinguish time-series input data. Herein, an interface-type dynamic transistor gated by an HfZrO (HZO) film was introduced to perform reservoir computing. The channel conductance of Mott material LaSrMnO (LSMO) can effectively be modulated by taking advantage of the unique coupled property of the polarization process and oxygen migration in hafnium-based ferroelectrics. The large positive value of the oxygen vacancy formation energy and negative value of the oxygen affinity energy resulted in the spontaneous migration of accumulated oxygen ions in the HZO films to the channel, leading to the dynamic relaxation process. The modulation of the channel conductance was found to be closely related to the current state, identified as the origin of the nonlinear response. In the time series recognition and prediction tasks, the proposed reservoir system showed an extremely low decision-making error. This work provides a promising pathway for exploiting dynamic ion systems for high-performance neural network devices.

摘要

由于具有易于训练和低硬件开销等各种优势,与传统前馈网络相比,储层计算能够更高效地用于解决与时间相关的任务。包含固有非线性动态过程的物理储层可作为下一代动态计算系统。高效的储层系统需要非线性和动态响应来区分时间序列输入数据。在此,引入了一种由HfZrO(HZO)薄膜门控的界面型动态晶体管来执行储层计算。利用基于铪的铁电体中极化过程和氧迁移的独特耦合特性,可以有效地调制莫特材料LaSrMnO(LSMO)的沟道电导。氧空位形成能的大正值和氧亲和能的负值导致HZO薄膜中积累的氧离子自发迁移到沟道,从而导致动态弛豫过程。发现沟道电导的调制与当前状态密切相关,这被确定为非线性响应的起源。在时间序列识别和预测任务中,所提出的储层系统显示出极低的决策误差。这项工作为开发用于高性能神经网络设备的动态离子系统提供了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验