Suppr超能文献

通过迁移学习方法加速有前景的光热花菁分子的发现。

Expediting the discovery of promising photothermal cyanine molecules through a transfer learning approach.

作者信息

Zhang Zhiwen, Wu Siwei, He Liqiang, Cao Guining, Tang Jiacheng, Pan Zhenxing, Huang Zihui, Yang Yuhang, Li Andi, Wang Yang, Cai Shuting, He Yan, Liu Xujie

机构信息

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.

School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang City, Liaoning Province, 110016, China.

出版信息

Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf413.

Abstract

Cyanine-based molecules have gained significant attention in photothermal therapy due to their unique fluorescence brightness and tunable spectral properties. However, the development of new photothermal agents is often constrained by the complexity of the chemical landscape and the need for biocompatibility. To address these challenges, we present an innovative transfer learning approach for rapidly identifying promising photothermal agent candidates with excellent photothermal properties, high synthetic feasibility, and superior biocompatibility. Using natural language processing, our pretrained model generated a molecular library based on cyanine scaffolds. The most promising candidates were screened rigorously through a weighted analysis of chemical indicators, such as photothermal performance and synthetic accessibility and biological indicators, including bio-toxicity. From these, three molecules were selected for retrosynthetic analysis. This artificial intelligence-driven approach provides a robust solution to the traditional challenges in photothermal agent design, significantly enhancing their potential applications in cancer bioimaging, mitochondrial phototherapy, and image-guided surgery.

摘要

基于菁的分子因其独特的荧光亮度和可调谐的光谱特性而在光热疗法中受到了广泛关注。然而,新型光热剂的开发常常受到化学领域复杂性以及生物相容性需求的限制。为应对这些挑战,我们提出了一种创新的迁移学习方法,用于快速识别具有优异光热性能、高合成可行性和卓越生物相容性的有前景的光热剂候选物。利用自然语言处理技术,我们的预训练模型基于菁支架生成了一个分子库。通过对化学指标(如光热性能和合成可及性)以及生物指标(包括生物毒性)进行加权分析,对最有前景的候选物进行了严格筛选。从中选择了三个分子进行逆合成分析。这种人工智能驱动的方法为光热剂设计中的传统挑战提供了一个强大的解决方案,显著增强了它们在癌症生物成像、线粒体光疗和图像引导手术中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b0e/12346445/eb650ac1b5ce/bbaf413f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验